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Abstract

I utilize new computational methods to study how economic agents solve combinatorial opti-

mization (CO) problems, where an optimal solution is selected from a large, discrete set. CO

problems are ubiquitous in structural trade and spatial models, from firms deciding where to

source inputs and open plants to social planners determining where to allocate infrastructure

and enact policies. I use a machine learning model to approximate policy functions that learn

to solve CO problems through repeated interaction with a simulated economic environment.

I benchmark this approach to existing algorithms for several CO problems from trade, of-

ten yielding either optimal or superior policies with competitive computational times. I then

demonstrate how this method can be applied to models with rich interdependencies, for which

current methods do not work. I estimate a model of export market entry with complementarity

in fixed costs and substitutability through increasing marginal costs.
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1 Introduction

Combinatorial Optimization (CO) problems involve making an optimal combination of discrete
choices. In trade and spatial settings, CO problems are pervasive from firms choosing where to
source inputs, to multinationals selecting plant locations, to social planners choosing how to allocate
infrastructure.1 Solving such problems has relied on using either heuristics or specialized algorithms
enabled by model assumptions and precise parameterizations. This project uses advancements from
machine learning to learn how to solve otherwise non-tractable CO problems. I use these methods
to identify optimal solutions in a wide variety of CO problems, oftentimes outperforming existing
techniques both in terms of solution quality and computational time. I then show how to estimate
models of combinatorial choice with no restrictions on the complementarity or substitutability
between choices, a crux of previous work.

CO problems present themselves when an agent makes a combination of discrete choices to
maximize an objective, and any one choice affects the payoffs from the other choices. To use Jia
(2008) as an example, when Walmart evaluates the set of markets to enter it will not consider just
the unilateral payoff from opening each store. Since nearby stores can share the same distribution
infrastructure or cannibalize sales from one another, the payoff from entering one market depends
on the set of other markets serviced. With N possible markets, this interdependence turns an
optimization problem over N binary choices into one over 2N subsets of choices. This quickly
becomes an intractable problem as N grows, but the economics literature has continued down a
handful of routes.

A first strand of the literature proceeds by considering problems where choices are always either
complements or substitutes. This enables the use of algorithms that bound the set of possible choices
to a set smaller than 2N , oftentimes uniquely identifying a solution. Jia (2008), Antràs et al. (2017),
Alfaro-Urena et al. (2023), and Arkolakis et al. (2023) develop and use such algorithms to tackle
problems from input sourcing to export market entry.2 A second strand relaxes the discrete nature
of the problem, instead allowing firms to make continuous decisions. When combined with necessary
theoretical restrictions, this opens the door for calculus-based optimization techniques. Along these
lines, Castro-Vincenzi (2022) considers a multinational’s problem of allocating continuous capacity
across a set of countries and Oberfield et al. (2024) considers a firm’s choice over a density of
plants across space.3 Third, there are sampling-based algorithms that converge to an optimum
by repeatedly perturbing the solution and probabilistically accepting/rejecting changes. Kreindler
et al. (2023) and Houde et al. (2023) apply these methods to optimizing transportation and logistics
networks. Fourth, some CO problems can be restated as integer linear programs when combined

1See Antràs et al. (2017), Tintelnot (2017), and Kreindler et al. (2023) as respective examples.
2In cases where N is small, computing an optimum by evaluating every possibility is feasible. Tintelnot (2017)

uses this approach to study plant location choices for German multinationals, limiting the choice set to 12 European
and North American countries.

3The former paper requires certain convexity and concavity properties on the objective function and the latter
studies a limiting case where plants have local spillovers only.
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with appropriate constraints - enabling the use of specialized commercial optimization software (e.g.
Gurobi Optimization, 2024). Head et al. (2024) and de Gortari (2020) use linear formulations of
CO problems to tackle multi-stage production problems.

The goal of this paper is to place as few restrictions on the structure of the problem and produce
optimal or near-optimal solutions. Additionally, since I am interested in estimation where the CO
problems of many agents are repeatedly solved over varying parameters values, I require a solution
method which is fast. These criteria generally eliminate the first, second, and fourth approaches
as they rely on specific problem features not always available. Choices may not always be strictly
complements or substitutes, may not be accurately approximated by a continuous choice, and will
not always return linear payoffs. This also eliminates the third approach as it relies on converging
to an optimal choice set after sampling and evaluating a larger number of possibilities. The time
required to compute new solutions with this approach precludes estimation.

As a solution, this paper proposes a policy function that learns optimal decisions by interacting
with a simulated economic environment. The policy function is a flexible, parametric rule that
maps payoff-relevant variables to optimal choices. The parameters of this rule are optimized through
reinforcement learning, where the rule is trained on simulated problem instances. In instances when
the rule performs well, its parameters are updated to encourage similar decisions. By simulating
thousands of problems and repeatedly updating parameters, the policy function converges to one
that reliably predicts high-quality solutions to the CO problem at hand. The policy function can be
used both to solve problems where parameters are fixed, and to estimate parameters where optimal
choices are matched to those observed in data.

Machine Learning Literature I build on a set of papers in the machine learning literature
that use flexible models to approximate value and policy functions for canonical CO problems from
operations research. My main point of reference is Kool et al. (2019), but the general strategy of ap-
proximating policy function through reinforcement learning begins with Sutton et al. (1999). Even
more broadly, the application of machine learning models to combinatorial optimization problems
dates back to Hopfield and Tank (1985). More recently, researchers have developed competitive
solvers by combining deep neural networks (i.e. large-scale machine learning models) and reinforce-
ment learning - Bello et al. (2017) and Dai et al. (2017) are the earliest works here. For a more
exhaustive review of the literature see Cappart et al. (2021) and Mazyavkina et al. (2020).

The literature I draw on is largely focused on problems like the Traveling Salesman Problem
or the Capacitated Vehicle Routing Problem, namely problems featuring linear objective functions
with decades of commercial development into algorithms that can solve them to global optimality.
The objective of the referenced papers is largely to compete against these solvers, on which there
has been mixed success. However, in economics, we often have models with rich nonlinearities
that vary from paper to paper in such a way that make it difficult to benchmark algorithms and
collectively develop tools. I additionally have the challenge of estimation; how can one use observed
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combinatorial choices to back out economically meaningful structure. I contribute to this literature
by first developing new model components that improve performance, extending the tools to non-
linear models with richer notions of complementarity and substitutability, and demonstrating how
these models can be used for the purpose of estimation.

More broadly, the application of machine learning models to approximate rich functions in eco-
nomics is increasingly common. For two examples,Fernández-Villaverde et al. (2023) use neural
networks to approximate the law of motion of non-linear state variables in a model of household
savings. Hodgson and Lewis (2023) use neural networks to approximate a value function for con-
sumer search with the goal of extrapolating to unseen states. In terms of CO problems in economics
, a contemporaneous paper, Huang and Yu (2024), also experiments with techniques from machine
learning. My work differs in several ways. First, the authors rely on restating any static CO
problems as dynamic ones where choices are stochastically spread out over time, and they propose
approximating the dynamic value function with a machine learning model. I instead approximate
a policy function which is directly applicable to the static or dynamic CO problems commonly
found in the economic literature. Second, I use different model components specifically designed for
CO problems featuring original components that I find necessary for optimal performance on most
of my problems. The authors use a standard feed-forward neural network and do not report any
systematic optimality gaps, compute times, or learning curves for their model.4 Finally, I provide
multiple estimation strategies and evaluate them on a new, otherwise intractable, model with data
on firm-level decisions.

Outline I start with a high-level introduction to the methodology, using a model of export market
entry as a running example throughout the paper. Here, firms decide on a set of countries to export
to, where each choice generates a revenue and incurs a fixed cost. Exporting to two countries can be
either substitutes, due to increasing marginal costs, or complements, due to interdependence in fixed
costs. I then posit a parametric policy function that decides what choices to make as a function of
each country’s characteristics, e.g. revenues potential or distance, and structural parameters. This
changes the optimization problem from one over discrete choices, to one over parameters of a policy
function that makes those discrete choices for us. The existence of rich function approximations
from machine learning and optimization routines from reinforcement learning make this a viable
solution strategy.

I then introduce four problems of combinatorial choice from the trade literate. The starting
point is the input sourcing and plant location problems of Antràs et al. (2017) and Tintelnot
(2017). These share the feature that all choices must be complements or substitutes, never a mix of
both. This restriction enables the use of bounding algorithms (developed by Jia 2008 and Arkolakis
et al. 2023) which can reliably solve these problems to their global optimum. The second problem

4The authors report using 7 layers and 256 or 512 nodes in each layer, this is roughly 3 orders of magnitude
smaller than the models I use. I find the model size, architecture, and novel components I contribute necessary for
the level of performance I report.
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I consider extends the input sourcing model of Antràs et al. (2017), allowing for oligopolistic firms
that compete in final goods markets not just with each-other, but with an outside sector. If the
elasticity of substitution between firms is greater than that across sectors, then sourcing choices can
be complementary at low market shares and substitutable at high market shares.

The third problem is one of global value chains with scale economics. I start with a generalized
version of the sequential production model of Antràs and Gortari (2020), where I allow for non-
unitary substitution elasticities between stages as well as scale economics. The combinatorial choice
is over a sequence of locations corresponding to each stage of production, where a fixed cost needs to
be incurred when setting up each stage. I show how such a problem is amenable to a new dynamic
programming algorithm. The fourth problem is an extension of the export market entry model used
in the introductory example. The model is a static version of Alfaro-Urena et al. (2023), where I
break the supermodularity property by introducing a competing force for substitutability.

I continue by formalizing each problem as a Markov decision process with general notation,
and stating the generic optimization problem of finding an optimal policy. Next, I introduce the
principle of function approximation for the optimal policy. Here I approximate the policy function
with a lower-dimensional parametric function. The new objective is then to find the parameters of
this function that generate the best policies, as determined by the economic objective function. I
conclude the section with discussing the optimization algorithm for fitting the policy function.

What makes function approximation a viable strategy for combinatorial optimization problems
is the availability of machine learning models capable of capturing rich interdependence between
discrete choices. The two key features of these models is their ability to mix information about
various choices and dynamically update what information is considered as a solution is constructed.
I walk through an intuitive explanation with the export market entry model as an example.

The optimized policy functions return (near) optimal policies on all problems I consider. For
cases where an optimal benchmark is not available, policies are superior to those produced from
other algorithms. For the input sourcing and plant location problem solutions are within 0.04% of
the optimum for cases with 20 and 50 locations. For the oligopoly input sourcing problem, solutions
are within 0.09% for problems with 20 locations. For the 50 and 100 location version I benchmark to
a greedy search; solutions are 120% and 46% better in the 50 and 100 location case respectively. For
the global value chain problem with fixed costs, I benchmark to a dynamic programming solution
which approximates an optimum; solutions are 1% better in the 20, 50, and 100 location cases. For
the export market entry problem I later estimate, solutions are within 0.03% of the optimum for
the 20 location case and 11% better than a greedy algorithm in the 50 location case.

The next dimension of performance I consider is time; policy functions are quick to optimize
and afterwards produce optimal solutions in a relatively short amount of time. Optimization takes
on the order of magnitude of minutes, with models normally requiring fewer than 500,000 simulated
problems to converge with optimization usually taking less than 11 seconds per 10,000 instances
to complete. Producing optimal policies for the export-market entry model I next estimate takes 1
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second for 1,000 optimal policies.
The policy function is optimized over a pre-specified distribution of structural parameters. The

corresponding estimation problem takes observed combinatorial choices, and asks what structural
parameters generate policies consistent with those observed. I sketch a simulated-method of mo-
ments procedure as well as a Bayesian and quasi-Bayesian procedure that performs the function
approximation and estimation simultaneously. Estimation raises an important question of approxi-
mation error. Since the methodology I propose has no guarantees on optimality, the previous section
serves to alleviate concerns by demonstrating (near) optimality on a variety of problems.

Finally, I estimate a model of export market entry with substitutability from increasing marginal
costs and complementarity from interdependence in fixed costs. The model is a static version of
Alfaro-Urena et al. (2023), augmented by decreasing returns to scale in firms’ production technol-
ogy. The inclusion of decreasing returns to scale, consistent with existing evidence on firm exporting
(Almunia et al. 2021), produces a better model fit and results in smaller estimated fixed costs. I
demonstrate the importance of the new estimates for counterfactuals: a model with only comple-
mentarities is not able to generate reallocation to other export markets when negative shocks hit
the current export choices. I highlight how this leads to qualitatively different export responses to
trade shocks.

I conclude with a discussion of ongoing work and directions for future research. In progress is the
estimation of a firm-level characteristics demand system for imports. Firms here have heterogeneous
preferences over characteristics which describe each country, and must make both an intensive and
extensive margin choice of where to import from. As far as future work goes, the methodology is a
general framework for optimization. The function approximation I use and the specific optimization
algorithm are just one of many possible options. Future work will be able to draw on new innovations
from machine learning and likely achieve better performance. Otherwise, I only consider partial
equilibrium static models in this paper. A natural extension of these tools is to general equilibrium
or dynamic settings.

2 Approximating and Learning Policy Functions

This section introduces the methodology at a high level with an example to build intuition. Consider
a firm choosing a subset of N potential countries to export to. The firm’s choice set can be
represented by a set of indicator variables { i}i2N , which take a value of 1 when exporting to the
corresponding country. Exporting generates a fixed revenue from each country, Ti. And, increasing
marginal costs make profits a concave function of total revenue, (

PN
i=1 iTi)� where � 2 (0, 1).

Exporting to a country also requires a fixed cost payment linear in distance, ↵dhi where dhi is the
distance from the firm’s location to the country i. But, complementarities in fixed cost make it
cheaper to export to multiple nearby markets. The fixed costs of exporting to i decreases by a
factor of �

PN
j 6=i jd

�1
ji , where dji is the distance between countries j and i. The firm’s profit from
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a set of choices is given by

V ({ i} , s) ⌘
 

NX

i=1

iTi

!�

�
NX

i=1

i

 
↵dhi � �

NX

j 6=i

jd
�1
ji

!
(1)

where s = {{Ti, dhi, {dji}} , �,↵, �} indexes the problem state.5

If � = 1, then the firm’s profit function would only feature complementarity between choices.
Conversely, if � = 0, then it would only feature substitutability between choices. Jia (2008) and
Arkolakis et al. (2023) provide algorithms for solving these cases, but there is no general strategy
for solving a combinatorial choice model that features both complements and substitutes.

This project does not directly provide an algorithm for solving any particular combinatorial
choice problem. Instead, inspired by work from the intersection of machine learning and operations
research, I first write a parametric policy function that decides what choices to make as a function of
the problem state. And second, I use a learning algorithm to tune the policy function to maximize a
problem-specific profit function like equation (1). This changes the optimization problem from one
over discrete choices, to one over parameters of a mapping from states of the problem to indicators.

Suppose, as a simple example, the policy function assigned a probability for exporting to each
country:

p ( i = 1|s;⇥) = �

 
Ti✓1 + �✓2 + dhi✓3 + ↵✓4 +

X

j 6=i

d
�1
ji ✓5,j + �✓6

!
(2)

where s again indexes the problem state, ⇥ = {✓k} collects a set of input weights, and � is a function
that ensures a probability in (0, 1). The goal is to find the weights ⇥ that maximize the expected
profit from applying this policy function to equation (2) over a distribution of problem instances
F (s), pre-specified by the researcher.6 Formally, I am solving

max
⇥

s⇠F (s)

⇥
{ i⇠p( i|s;⇥)} [V ({ i} , s)]

⇤
(3)

where V ({ i} , s), given by equation (1), denotes the value of the firm’s choice. At an intuitive
level, one might expect a positive weight on Ti (✓1 > 0) and a negative weight on dhi (✓3 < 0) -
choices with a greater revenue net of cost should be more likely to be included in the choice set.
Additionally, since as � gets larger, complementarity effects between choices make each more likely
to be included, one could expect a positive associated weight (✓6 > 0). One could continue reasoning

5Antràs et al. (2017) and Tintelnot (2017) are nested in this equation as cases where � = 0 and � > 1 or � < 1,
albeit with different microfoundations and parameterizations of fixed costs. Alfaro-Urena et al. (2023) and Antràs
et al. (2023) are similar as well, with richer structure for the interdependencies between fixed costs.

6The distribution F (s) is the relevant distributions of structural parameters and payoff relevant variables that
one wants the policy function to perform over. The benefit of maximizing unconditional on a particular s, is that I
can use the resulting policy function to solve the problems of heterogeneous agents (where {Ti, dhi} varies) and to
estimate over structural parameters (where {�,↵, �} vary).
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for each weight, crafting an algorithm by heuristically assigning a value to each input based on their
understanding of equation 1.

Instead, to find the optimal set of weights, I use an optimization paradigm known as reinforce-
ment learning. Imagine I started with ✓k = 0 8k so that each choice is equally likely and I evaluated
the objective (3). Now suppose I raised ✓1 slightly. This would make countries with higher revenue,
Ti, more likely to be selected for exporting, thereby raising the objective value.7 I can do this re-
peatedly for each input weight, evaluating perturbations to the weights and adjusting based on the
change in the objective value. I may then converge to set of input weights ⇥ that are in expectation
maximizing the objective subject to the functional form assumption of equation (2).8

The problem with the approach described above is that equation (2) is likely not flexible or
informed enough to make (near) optimal choices. I could go down the route of experimenting with
additional input variables, higher-order polynomials of s, interactions between the features of each
choice, or other nonlinear functions of s. I opt to instead use a machine learning model known as a
Transformer for the approximation.9 Key to its success, the transformer is structured to learn how
to optimally mix information streams and understand the context of a problem.10 For instance, in
visual processing tasks one combines pixel-level data to learn higher-order structure about an image,
and in language tasks one merges the information embedded in words to uncover latent structure
about a sentence. The same principle applies here. Combinatorial problems are characterized by
the interdependence between discrete choices, so I naturally use a model that is capable of learning
how to best mix information about each choice.

The exact details regarding how a Transformer is able to accomplish this are in Section 5. But
one can roughly imagine a policy function as follows:

p ( i = 1|s;⇥) = �

 
Ti✓1 (s) + �✓2 (s) + dhi✓3 (s) + ↵✓4 (s) +

X

j 6=i

d
�1
ji ✓5,j (s) + �✓6 (s)

!
,

where the weights are dynamically allowed to depend on other features of the problem s. For
example, when � is larger, centrally located countries generate stronger complementarities. One

7This example assumes that the features of s are uncorrelated such that choices with high values of Ti are not
otherwise systematically different.

8There exists global optimum convergence proofs for standard reinforcement learning settings - among the most
notable, Watkins and Dayan (1992) proves convergence for a standard Q-learning environment. Unfortunately,
I can not make any formal statement in this environment about convergence to a global optimum. The best I
can do is reference Sutton et al. (1999), who prove convergence to a local optimum when using a differentiable
approximation. A goal of Section 6 is to numerically verify how close I am to optimality or how I compare to
alternate approximate/heuristic methods.

9Many machine learning models have been used to approximate policy/value function for CO problems - the
earliest works Dai et al. (2017) and Bello et al. (2017) use a graph encoder and a recurrent neural network. An
earlier version of this project experimented with the Dai et al. (2017) model, on which there was mixed success. The
literature has largely pivoted to using variants of Transformers.

10Understanding the details of machine learning model performance is an active area of research. Recent work,
Tolstikhin et al. (2021) and Yu et al. (2022), has highlighted that information mixing among input data is a key
feature of their success.

8



might want to put more weight on
P

j 6=i d
�1
ji and allow each dji to be weighted according to the

corresponding revenue, Tj. Or if � was small, large substitution effects imply that choices with
high unilateral profit would be desirable. One might then want the weight on Ti and dhi to reflect
i’s value relative to the other choices. The Transformer is capable of generating such information
mixing schemes, and it will learn one appropriate for maximizing equation (1).

To summarize, I am not providing an algorithm tailored to an exact CO problem. Rather, I am
proposing a flexible, parametric function for selecting choices and an optimization routine for tuning
its parameters to return objective-maximizing solutions over a distribution of problems. No data
on optimal actions is required. I use problems from a pre-specified distribution, use policies from
a parametric policy function, evaluate the quality of those policies with an objective function, and
update the policy function to return increasingly better policies. The detailed optimality results for
an export market entry problem are presented in Section 8 and estimation results using firm-level
export data are in Section 8. But to preview, the policy function approximation produces objective
values that are on average within 0.01% of the optimum.11

3 Economic Models of Combinatorial Choice

This section introduces the structural models considered and their corresponding combinatorial
optimization problems. I focus on models from the international trade literature, where the multi-
national environment naturally lends itself to such problems. First, I consider the input sourcing
and plant location problems of Antràs et al. (2017) and Tintelnot (2017). The objective functions
in these problems are either supermodular or submodular, admitting the use of powerful bounding
algorithms that ease optimization. I use these models as a way to benchmark this paper’s method-
ology against known algorithms. Second, I present an oligopoly version of Antràs et al. (2017),
where changing demand elasticities create complements at low market shares and substitutes at
high market shares. This change prevents the use of existing bounding algorithms. Third, I intro-
duce a global value chain problem with scale economies that involves choosing an optimal sequence
of J production stages across N potential locations. Alongside, I develop a dynamic programming
approach to compute optima for reference. Fourth, I present a static version of the export market
interdependence model of Alfaro-Urena et al. (2023), augmented with increasing marginal costs
which generates a force for substitutability. I estimate the model in Section 8 with firm-level data
on export decisions from the World Bank Exporter Dynamics Database (Fernandes et al. 2016).
Fifth, I preview the subject of followup work; a firm-level characteristics demand system for imports
with an extensive and intensive margin.

11To evaluate solution methods I use a measure called the optimality gap, which can roughly be interpreted as the
average percent difference between the objective values returned by two separate algorithms. See equation (18) for
a description of this performance metric.
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3.1 Input Sourcing and Plant Location

A subset of N potential choices is selected to solve

max
{ i}22N

 
NX

i=1

iTi

!↵

�
NX

i=1

ifi, (4)

where I refer to Ti > 0 as the return to a choice and fi > 0 as the cost of a choice. The parameter
↵ > 0 governs the interaction between choices. When ↵ > 1, the objective (4) is supermodular: as
more choices are included in the solution, the contribution of another choice increases. Conversely,
when ↵ < 1, the objective (4) is submodular: the contribution of another choice decreases as more
choices are added to the solution. Two problems that fit this framework are the input sourcing
problem of Antràs et al. (2017) and the plant location problem of Tintelnot (2017). In Antràs
et al. (2017) the choice is over what locations to source from and in Tintelnot (2017) the choice
is over what locations to open production sites in. In both papers, Ti is associated with some
marginal cost reduction (either from combining inputs across countries or outputs across plants)
and fi is the associated fixed cost. In the former case, ↵ > 1 which allows the authors to implement
the algorithm from Jia (2008) to bound the optimal solution. In the later case, ↵ < 1 and the
solution method involved limiting N to 12, allowing a direct search for the optimum by evaluating
all 2N possibilities. Recently, Arkolakis et al. (2023) have provided an algorithm for the ↵ < 1 that
produces bounds for the optimal solution.

The algorithms used to solve either version of the objective (4) proceed by first producing
bounds that contain elements which can either never be in the solution or must be in the solution.
If these bounds do not uniquely identify a solution, then a search needs to be done among the
remaining choices. Arkolakis et al. (2023) additionally develop a branching procedure for speeding
up this search. Ultimately, the bounding procedures are fast and reliable, often pinning down
a unique solution with no additional computation required. They leverage the strong theoretical
assumptions imposed in (4) to their benefit. The methods I am proposing today are geared for richer
models, but benchmarking performance to bounding algorithms will serve as a point of reference.

3.2 Oligopoly in Input Sourcing and Plant Location

Solving the previous model relies on a theoretical assumption: choices must always be either com-
plements or substitutes. We are beholden to this assumption since without it, we do not have a
disciplined way to reduce or search the solution space. To explore one deviation where this assump-
tion does not hold, I will embed the above framework into the market structure of Helpman and
Niswonger (2020).12

Consider an industry populated by one oligopolistic producer, k, and a continuum of price-taking
12The discussion here is applicable to the Atkeson and Burstein (2008) market structure, but I focus on a market

structure where only one firm is making a combinatorial choice to simplify later computation.
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firms with constant marginal cost. Each firm produces a unique variety. The residual demand curve
faced by a producer k is

xk = P
�
p
��
k (5)

where P
1�� = p̄

1�� + p
1��
k and � = � � ". The parameter � is the elasticity of substitution across

varieties in the industry, while " determines the degree of substitution between the CES aggregate
of varieties and the outside economy. The fixed price of other varieties is given by p̄. Facing a
marginal cost of ck, the optimal price set by producer k is

pk =
� � �sk

� � �sk � 1
ck; where sk =

p
1��
k

p̄1�� + p
1��
k

. (6)

Now assuming that marginal costs are determined by an input sourcing process where ck =⇣PN
i=1 iTi

⌘�1/✓

and fi are the associated fixed costs, the optimization problem of firm k is

max
{ i}22N

✓
� � �sk

� � �sk � 1
� 1

◆ 
NX

i=1

iTi

!�1/✓

xk �
NX

i=1

ifi (7)

subject to equations (5) and (6). A micro-foundation for this cost-function is provided by Antràs
et al. (2017) where Ti governs the cost of goods from location i and ✓ is the Frechet scale parameter.

If � � 1 > ✓ and " � 1 < ✓, then (7) is neither supermodular nor submodular for all sk.13

Intuitively, when the oligopolist’s market share is near 0, any marginal change in costs will not
affect the aggregate price index P . Cost reductions at this point induce changes in relative demand
between the varieties, which is governed by the elasticity of substitution �. When the firm’s market
share is near 1, then the aggregate price index is effectively the firm’s price. Cost reductions at this
point induce changes in the absolute level of demand, which is governed by the elasticity parameter
". Since " < �, this results in the (7) turning from a supermodular to a submodular function. The
example shows how fragile the interdependence properties of a model can be: small deviations can
result in intractable numerical environments.

3.3 Global Value Chains

The previous two sections presented models that require optimizing over a subset of possible choices.
The methods proposed today can also be applied to combinatorial optimization problems where the
relevant object is a sequence of discrete choices. A familiar case in the trade literate is Global Value
Chains (GVCs). I start with a generalization of the GVC model described in Antràs and Gortari
(2020) and de Gortari (2020).

Production requires J sequentially completed stages. To produce output at stage j, a stage-
13See Appendix Section (D.1) for a formal statement and numerical example.
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specific input Xj is combined with the output of the previous stage Y
j�1 using CES technology:

Y
j =

✓�
↵
j
� 1

�j
�
X

j
��j�1

�j +
�
1� ↵

j
� 1

�j
�
Y

j�1
��j�1

�j

◆ �j
�j�1

,

where �j is the stage-specific elasticity of substitution and ↵
j governs how intensely each input

is used in production. The initial stage is characterized by linear production in the stage-specific
input only. These stages can be completed in any of N different locations which each have their
own cost, cjn, of producing stage-specific goods. Here, superscript j denotes the stage and subscript
n the country. If a firm locates two subsequent stages in different countries, they incur a potentially
stage-specific iceberg trade cost ⌧ jnk.

Using the notation of Antràs and Gortari (2020), let ` (j) denote the location of stage j produc-
tion and ` ⌘ {` (1) , ..., ` (J)} the entire sequence of production locations. I can recursively define
the cost of production at each stage given the production sequence ` as follows:

C
j
`(j) (`) =

✓
↵
j
⇣
c
j
`(j)

⌘1��j

+
�
1� ↵

j
� ⇣

C
j�1
`(j�1)⌧

j
`(j�1)`(j)

⌘1��j
◆ 1

1��j

, (8)

where for the initial stage costs are C
1
`(1) (`) = c

1
`(1). A simplified cost equation arises in the limiting

case where �j ! 18j:

C
j
`(j) (`) = �

JY

j=1

⇣
c
j
`(j)

⌘↵n�n J�1Y

j=1

�
⌧`(j)`(j+1)

��n

where �j =
QJ

k=j+1 (1� ↵k) and � is scaling parameter consisting of parameters ↵
j and �

j. This
case is the focus of Antràs and Gortari (2020) due to analytical and computationally appealing
features - it can be linearized by taking the log. However, restricting the elasticity of substitution
across stages to 1 may be unrealistic.14 The first point of departure is then handling models with
non-unitarity elasticities.

The second point of departure is introducing increasing returns to scale (i.e. decreasing average
costs) by requiring that fixed costs be paid to locate stages of production across different countries.15

Namely, setting up production incurs a fixed f
j
`(j�1)`(j) - I allow this fixed cost to depend on the

stage j and the locations of stages ` (j � 1) and ` (j).16 Taking total quantity Q as exogenous, the
14Estimates of across-stage elasticities are lacking, but Atalay (2017) and Brian C. et al. (2024) estimate an

elasticity of substitution across intermediates inputs significantly less than 1. If stages of production are internal to
a firm and the result of combining separate intermediate inputs in a sequential process, then these results suggest
the Cobb-Douglas GVC model may be misspecified.

15An increasing returns to scale GVC model is the subject of de Gortari (2020), but it relies on the linearization
of the Cobb-Douglas cost equation which permits Integer Linear Programming techniques.

16I require that fixed costs depend on nothing beyond the previous stage of production, otherwise the state of the
dynamic program will have to include additional prior location choices.
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cost-minimization problem is

min
`2NJ

QC
J
`(J) (`) +

JX

j=1

f
j
`(j�1)`(j), (9)

where C
J
`(J) (`) is determined by equation (8). One could alternatively specify a demand system

that generates Q as a function of the cost in the final stage.

3.3.1 Dynamic Programming

The GVC problem with scale economies represented by (9) can be solved with dynamic programming
through backwards induction. Given the marginal cost of production through stage J � 1, CJ�1,
as well as the accumulated fixed costs, F J�1, and the location of production for the previous stage
` (J � 1), the problem faced by the firm in determining the final stage of production can be written
as

VJ

�
C

J�1
, F

J�1
, ` (J � 1)

�
= min

`(J)2N
QC

J
�
` (J) , CJ�1

, ` (J � 1)
�
+ F

J
�
` (J) , F J�1

, ` (J � 1)
�

(10)

subject to

C
J
�
` (J) , CJ�1

, ` (J � 1)
�
=
⇣
↵
J
�
c̄
J
`(J)

�1��J +
�
1� ↵

J
� �

C
J�1

⌧
J
`(J�1)`(J)

�1��J
⌘ 1

1��J
,

F
J
�
` (J) , F J�1

, ` (J � 1)
�
=F

J�1 + f
J
`(j�1)`(j).

(11)

This setup leverages the fact that stages prior to J�1 only affect the payoff at stage J through their
contribution to the marginal costs and fixed costs aggregators, CJ�1 and F

J�1. The only specific
information one needs about past decisions is the previous stage’s location, which determines the
current stage’s fixed and production costs through f

J
`(j�1)`(j) and ⌧

J
`(J�1)`(J).

Continuing this recursion backwards, the problem then faced at stage J � 1 can be written as

VJ�1

�
C

J�2
, F

J�2
, ` (J � 2)

�

= min
`(J�1)2N

VJ

�
C

J�1
�
` (J � 1) , CJ�2

, ` (J � 2)
�
, F

J�1 (` (J � 1) , ` (J � 2)) , ` (J � 1)
�

subject to the J � 1 analog of equation (11). Where note that the payoffs from any decisions at
this stage, VJ (·), were determined in the first step. One can continue in this manner until reaching
the initial stage.

Searching over all possible sequences requires evaluating N
J possibilities. This dynamic pro-

gram can reduce the number of computations required to solve the problem. First, note that the
continuous states of equation (10), Cj and F

j, need to be discretized into NC and NF values. The
final part of the state, the location of previous production takes one of N values. There are then
J ⇥NC ⇥NF ⇥N

2 calculations required to find the optimal sequence.17 For moderately sized value
17The state takes one of NC ⇥NF ⇥N values. Computing the minimum requires N computations - one for each
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chains with a realistic number of locations, the dynamic programming approaches requires orders
of magnitude less computations.18 This dynamic program serves as a benchmark for the compu-
tational methods I introduce since it is capable of finding a global optimum, up to discretization
error.

3.4 Export Market Interdependence

Standard models of extensive-margin export decisions, e.g. Melitz (2003), treat markets as inde-
pendent: the payoff from exporting to one market is not affected by the decision made for another
market. But, recent work, e.g. Alfaro-Urena et al. (2023) and Antràs et al. (2023), suggests interde-
pendence in export decisions operating through fixed cost reductions. The fixed costs of exporting
to one market may depend on the set of markets exported to. Intuitively, a firm in Mexico might
find it easier to export to Belgium if it already exports to France due to the shared language, prox-
imity, or economic union of the destinations. Simultaneously, there is evidence for substitutability
in exporting, e.g. Almunia et al. (2021), arising from decreasing returns to scale. For instance, if
the output of a farm in Mexico is limited by the amount of land it owns, then exporting to Canada
is a substitute for exporting to the US.

Formally, the problem is

max
{ i}22N

 
NX

i=1

iTi

!�

�
NX

i=1

i ⇥ fi ({ i}) , (12)

where Ti is a payoff parameter for entering a market i and fi is the associated fixed cost. The
parameter � < 1 governs the returns to scale and fi ({ i}) denotes that the fixed cost for market i
depends on the set of markets chosen. I only consider complementarity in fixed costs, i.e. fi ({ i}) is
weakly decreasing in the number of active markets. A model featuring either strict complementarity
(� = 1) through shared fixed costs or strict substitutability (fi ({ i}) = fi) through scale effect can
be solved with a bounding algorithm. Alfaro-Urena et al. (2023) do so for the complements-only
case, even extending the solution methodology to a dynamic model featuring forward looking firms
and sunk costs.19 In Section (8), I solve, estimate, and produce counterfactuals from a static version
of the author’s model augmented with a force for substitutability.

candidate location. And one has to do this J times - once for each stage.
18If N = 100 and J = 5 and one discretizes the state with NC = NF = 20, then brute force requires 1010

computations against the 2 ⇤ 107 required with the dynamic programming approach.
19Work by Liu (2024) extends the authors original algorithm to include both a super-modular static profit function

and an endogenous unobserved state variable.
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4 Reinforcement Learning

In order to solve the combinatorial problems presented in Section 3, I compute a policy function
that maps structural parameters and payoff relevant variables to optimal choices. The functional
form of that policy function is a machine learning model. And, the parameters of that functional
form are chosen with reinforcement learning to return increasingly better policies. In this section,
I introduce the general optimization problem and principle behind reinforcement learning. In the
next section I detail the machine learning model.

Reinforcement learning is a broad field concerned with optimizing decision-making by agents.
Problems are often formulated as Markov decision processes which enable the use of learning algo-
rithms, dynamic programming ones like value- and policy-function iteration are the most standard.
Otherwise, this structure gives a familiar setting for researchers to evaluate problem setups and ap-
ply known learning algorithms.20 This is the same structure used by economists to set up dynamic
optimization problems.

Markov decision processes are characterized by four objects: the state space S, the action space
A, a transition kernel T : S ⇥ A ! S, and a reward function R : S ⇥ A ! . What I am
after is a policy function ⇡ : S ! A that maps the state to an optimal action. We can write a
recursively-defined value-function to assign a value to each policy:

V⇡ (st) = R (st, ⇡ (st)) + V⇡ (T (st, ⇡ (st)))

where st 2 S is the state, ⇡ (st) 2 A is the action prescribed by the policy function, R (·) is the
reward associated with taking action ⇡ (st) in state st, and T (·) is the new state achieved by taking
action ⇡ (st) in state st. The subscript t indexes steps in the sequential construction of a solution
to a static problem, not time. Hence there is no discounting. Substituting forward for V⇡, one can
alternatively write

V⇡ (st) =
1X

i=0

R (st+i, ⇡ (st+i))

subject to st+i+1 = T (st+i, ⇡ (st+i)). The goal is to find the policy which maximizes V⇡ (st).
As an example, I place the export-market entry problem from Section 2 in this framework. The

state st includes a vector of indicator variables { i} corresponding to each choice, payoff relevant
variables x ⌘ {Ti, dhi, {dji}j}, and structural parameters # ⌘ {�,↵, �}: st ⌘ {{ i} ,x,#}. The
policy function ⇡ (st) prescribes an action ⇡t 2 N - a choice to be added to the solution set. The
transition kernel T updates the state by setting the indicator associated with action ⇡t to a value
of 1.

Let V (st) denote the objective value associated with any state as in equation 1.21 Rewriting
20See Vesselinova et al. (2020) and Dai et al. (2017) for a Markov decision process formulation of canonical CO

problems, including the traveling salesman problem, for a machine learning application.
21The notation is changed from Section 2. The state now includes the set of choices made and is indexed by t -

denoting that the set of choices can change as a solution is iteratively constructed.
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below,

V (st) =

 
NX

i=1

i (st)Ti

!�

�
NX

i=1

i (st)

 
↵dhi � �

NX

j 6=i

j (st) d
�1
ji

!
, (13)

where i (st) makes explicit that the choices are contained within the state. The reward function is
then the change in objective value associated with any action-state pair: R (st, ⇡t) = V (T (st, ⇡t))�
V (st) . The cumulative reward from an initial state with indicators initialized to zero, s0, under a
policy ⇡ is then given by

V⇡ (s0) ⌘
SX

t=0

R (st, ⇡t) = V (sS) ,

where sS is the terminal state consisting of all actions taken {⇡t}St=0. Note, I am modeling a static
problem of combinatorial choice as a sequence of discrete decisions. There are a finite number of
choices that can be made, and no choice can be undone. There is then some terminal state S at
which the state will remain unchanged, and all future rewards will be zero.22

Given an initial state s0, the optimization problem is to find the policy ⇡
⇤ that solves

max
⇡

V⇡ (s0) .

This structure generalizes the problems represented by (4), (7), (9), and (12). The standard solu-
tion methods for such problems are iterative grid-based methods which sequentially fill in values of
V⇡⇤ (st) starting from terminal or initial states and working backwards or forwards. The bounding
algorithms referenced with Section 3.1 and the dynamic programming algorithm presented in Section
3.3.1 exploit properties of the objective function to do this without computing all 2N or N

J possi-
bilities. But the algorithms crucially hold some of the non-choice variables {x,↵} fixed.23 There is
no general strategy for efficiently computing V⇡⇤ (st) in combinatorial optimization problems, nor is
there an obvious way to include structural parameters in the state without proportionally increasing
its size.

4.1 Function Approximation

A tabular policy function ⇡ : S ! A has as many “parameters” as states: it stores one action for
each state. Given how many combinations of choices and structural parameters there are, this is
too large a “parameter” space to optimize over directly. I choose to instead approximate the policy
function with a lower-dimensional parametric function.24 Specifically, I use a stochastic policy

22In practice, since choices can be repeated and none can be undone, the terminal state appears after N iterations
of the state. This gives an opportunity for each choice to be selected, and no additional iterations are required since
nothing can then be added or removed.

23Alfaro-Urena et al. (2023) and Arkolakis et al. (2023) provide methods for computing policy functions over some
non-choice features of their states, but not structural parameters.

24There is an alternative approach that instead approximates an action-value function described in Appendix B.4.
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function

p (⇡|s;⇥) ,

which prescribes a probability for each policy ⇡ = {⇡t} (i.e. sequence of actions) given a state s

containing the structural parameters and payoff-relevant variables. The parameters of the function
are indexed by ⇥. Since the function I fit is an approximation of the true function it will be subject
to an approximation error. Generally, there will always exists a tradeoff between computational
complexity and approximation error, but Section 6 numerically verifies that this is negligible in my
applications.25

The new optimization problem is to find the parameters of a parametric function, that solves

max
⇥

s⇠F (s)

h
⇡⇠p(⇡|s;⇥) [V⇡ (s)� b (s)]

i
. (14)

The inner expectation is over the distribution of policies implied by the stochastic policy function
in a state s. The outer expectation is over the distribution of states that I am interested in, F (s).
This distribution of states is pre-specified by the researcher. For example, F (s) might be a prior
for or even estimates of the structural parameters of interest or the distribution of payoff-relevant
variables. The benefit of maximizing unconditional on a particular s, is that the resulting policy
function can be used to evaluate policies for heterogeneous agents, where x varies, or for estimation,
where # varies.

The remaining component of (14) is b (s), the baseline. Since s contains parameters that affect
the scale of V⇡ (s), normalizing with b (s) ensures that I do not overfit the policy function to states
which have high variance in objective values. As a simple example, one could use a running average
of past values of V⇡ (s) for related states to construct b (s). In practice, I attempt and expand on
several baselines recommended by the machine learning and combinatorial optimization literature.
Appendix Section B.1 provides further details.

A final note on the choice to use a stochastic policy function. Combinatorial optimization
problems can be plagued by local minima, interdependencies create lock-in effects where a firm may
have to change several decisions at once to get a better outcome. This makes the prospect of a
policy function that delivers a global optimum in one shot lofty. The stochastic policy function lets
one instead place probability weight on parts of the solution space where a global optimum might
exist. By then sampling the policy function and searching these spaces, one can more reliably
produce optimal solutions.

25See Bottou and Bousquet (2007) for a discussion of the general tradeoffs between computational complexity,
time, and approximation error in the context of learning algorithms.
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4.2 Optimization Framework

I use the REINFORCE algorithm of Williams (1992) to optimize the objective (14). This is the same
algorithm used in my main reference, Kool et al. (2019), to optimize a policy function for routing
problems from operations research. Let us start with some iteration of the parameter vector ⇥n.
With a completely parametrized policy function, I can do two things. I can both sample policies and
evaluate those policies with the economic value function. Therefore, one gradient-based algorithm
for updating ⇥ is

⇥n+1 = ⇥n + �r s

h
⇡ [V⇡ (s)� b (s)]

= ⇥n + � s [ ⇡ [V⇡ (s)� b (s)]r log p (⇡|s;⇥n)] ,
(15)

where � is a scaling parameter that controls how fast I update parameters.
To understand how this updating works, suppose the policy function for the example from

Section 2 was
p (⇡t = i; {✓1, ✓2}) = � (✓1Ti + ✓2dhi) ,

where � is the sigmoid function. Standard intuition says one should probably have a positive weight
on Ti and a negative weight on dhi. Markets with greater revenues and closer in distance should
be more likely to be selected. If one started with ✓1 = ✓2 = 0 and took the gradient as in (15),
then one would get a positive partial derivative for ✓1 and a negative partial derivative for ✓2. The
gradient suggests that the objective will be on average larger if parameters are updated accordingly
- raising ✓1 and lowering ✓2 so that choices with a higher Ti and a lower dhi become sampled more
frequently.

There are two challenges with directly applying equation (15): both the gradient and expecta-
tions can be difficult to compute. For the gradient issue, the function I use as the approximation will
consist only of linear combinations and non-linear transformations of the form f (x) = max {0, x}.
The gradient will therefore be easy to compute. As for the expectations, I use a stochastic version
of the gradient-based updating:

⇥n+1 = ⇥n + �

SnX

s

[V⇡ (s)� b (s)]r log p (⇡|s;⇥) ,

where in each iteration n I sample a collection of state S
n from F (s) to approximate the outer

expectation and sample one policy from p (⇡|s;⇥n) to approximate the inner expectation.
At a high level what I am doing is not too different from grid-based policy function iteration.

I start by guessing a policy function, only in this case the parameters of a particular function
p (⇡|s;⇥). I then look at the implied policies and when certain policies return relatively better
values of the objective function, I modify the policy function accordingly. I repeatedly evaluate
problems and update policies until convergence.

Appendix Section B.2 describes how the optimization algorithm can be augmented with theo-
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retical knowledge about the optimal policy function. If we know the optimal policy function must
satisfy certain conditions, then a penalty term based on the satisfaction of these condition can be
added to optimization objective. I show experimental results using the proposition regarding firm
productivity and optimal policies in Antràs et al. (2017). Finally, Appendix Section B.3 describes
how a policy function can alternatively be fit to data on optimal policies.

5 Machine Learning Models for Function Approximations

The previous section described how a parametric policy function could be optimized. But, in
order for that parametric function to return optimal policies, it must be capable of approximating
the true optimal policy function - a function with a high dimensional state space and complex
interdependencies between the variables of those states. Fortunately, machine learning has delivered
models precisely designed for these sorts of tasks.26 I employ a model known as a Transformer, first
proposed by Vaswani et al. (2017). My specific starting point is the model used by Kool et al.
(2019), and precise details about the model architecture can be found in Appendix Section A.
This Section overviews the model components and intuitively discusses how they each contribute
to approximating the optimal policy function.

The high-level workflow is as follows. First, I use the characteristics of each choice and the fea-
tures of the problem to create a vector-space representation of each choice. This new representation
of the problem summarizes the relevant information for each choice and its interdependence with
other choices. Second, I use those vectors to iteratively construct a solution, adding choices based
on information collected in their vector representation. This iterative construction additionally lets
me change the preferences for choices based on characteristics of those already made - prioritizing
complements and avoiding substitutes.

Running Example To illustrate how the approximation works with an example, let us continue
with the export-market interdependence problem from Section 2. I assume here that firms have
constant returns to scale in production, � = 1, to simplify exposition. The objective is then

max
{ i}22N

NX

i=1

iTi �
NX

i=1

i

 
↵dhi � �

NX

j 6=i

jd
�1
ji

!
. (16)

5.1 Encoder

The first stage of the model is an Encoder, which generates a vector-space representation of each
choice. The goal of this representation is to collect relevant information about each choice and relate

26There exists universal approximation theorems, e.g. Hornik et al. (1989), that prove there exists machine
learning models that are capable of approximating all functions from certain function spaces. I do not attempt a
formal statement here, but there are theoretical foundations for the success of machine learning models in some
settings.
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that information to the other choices. Let xi denote the characteristics of choice i and # denote the
structural parameters of the economic model. In the example, (16), this includes location revenues
and distances, xi ⌘ {Ti, dhi, {dij}}, as well as the parameter # ⌘ {↵, �}.

The Encoder’s first component, an initial embedding function parametrized by ⇥u, takes the
inputs for each choice, xi and #, and generates an initial vector-space representation of that choice

u
0
i = Initial Embedding (xi,#;⇥u) .

This consists of taking linear combinations of the inputs and applying non-linear transformations
to them: e.g. g (✓1Ti + ✓2dhi).27 This is separately done for each dimension of u0

i , allowing one to
carry multiple representations of each choice. In the example, one could imagine one dimension
of u

0
i is (Ti � ↵dhi) and the others could just pass on the components of xi. Note, a non-linear

transformation of the inputs, like ↵dhi, can be approximated with various piecewise linear functions.
The second component is an information mixing function parametrized by ⇥µ that interacts the

information in each u
0
i across dimensions and choices to create a new vector-space representation

for each choice:
µi = Information Mixer

�
u
0
i ,
�
u
0
i

 
;⇥µ

�
.

In the example, one can imagine numerous ways of interaction the initial embeddings to get new
representations of each choice. For instance,

NX

j=1

[(Ti � ↵dhi)� (Tj � ↵dhj)] or
NX

j=1

⇥
�d

�1
ji (Tj � ↵dhj)

⇤
. (17)

Both of these seem to capture a feature of the choice relevant for the optimization problem in
equation (16). The first measures how unilaterally profitable i is relative to the other choice. The
second, how close each choice is to other profitable choices. One would likely want to add choices
with high values of these new characteristics. While these representations have intuitive meaning as
I have presented them, this is not a requirement of the Encoder - it will learn whatever representation
and interaction of the input is relevant for optimization.

5.2 Decoder

The second stage of the model is a Decoder, which generates a sequence of actions based on the
choices’ embeddings. Let ⇡t denote the t-th choice selected and ⇡1:t the sequence of choices made
through t steps. The Decoder consists of an information mixing function parametrized by ⇥⇡ that
combines the vector-space representation of each choice to produces a probability distribution over

27The function g is known as an activation function. A popular choice is the rectified linear unit: g (x) = max {0, x}.
These activation functions enable approximation of non-linear function. Relatedly, commercial solvers for integer non-
linear programs use linear approximations of non-linear objectives and then standard linear programming techniques
to optimize.
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actions:
�i = Information Mixer (µi, {µi} ,⇡1:t�1;⇥⇡)

p (⇡t = i|⇡1:t�1,µ;⇥⇡) =
exp (�i)P
k exp (�k)

.

The sequential construction of the policy allows one to dynamically adjust preferences for choices
based on the complementarity or substitutability generated with the already made choices, ⇡1:t�1.

Going to the example, one might give a weight to each choice based on the speculated encoder
output in (17), but give additional weight to choices that are close to those already selected:

�i = ✓1

NX

j=1

[(Ti � ↵dhi)� (Tj � ↵dhj)] + ✓2

NX

j=1

⇥
�d

�1
ji (Tj � ↵dhj)

⇤
+ ✓3

X

j2⇡1:t�1\i

�d
�1
ji .

This way I start by adding choices which have high unilateral profit and are close to other high-
profit locations. Then, for the later choices, I give additional consideration to the locations near
those already selected.

To complete the notation, note that the probability for a particular policy from initial to terminal
choice, ⇡̄ = {⇡̄1, ..., ⇡̄T}, is the product of the relevant sequence of probabilities

p (⇡̄|µ;⇥⇡) =
TY

t=1

p (⇡t = ⇡̄t|⇡̄1:t�1, {µi} ;⇥⇡) .

And finally, consider the Encoder and Decoder to be just two components of an overarching policy
function: p (⇡|s;⇥) where ⇥ = {⇥u,⇥µ,⇥⇡} and s = {x,#}. It is this policy function that is the
subject of optimization in Section 4.2.

5.2.1 Potential Reward Information for Dynamic Decoding

This project contributes one core model feature not found in previous combinatorial optimization
and machine learning work. Given a partial policy ⇡1:t�1, I compute the change in objective
function from each potential choice, {R (st�1, ⇡j) ; 8j}. This scalar value is added to the Decoder’s
information mixer at each step. This gives an intermittent signal directly from the objective function
on how valuable each choice is given the current state.

Back to the example, the difference between the change in objective function and the unilateral
payoff of a choice is the complementarity generated by that choice for the current partial solution:

R (st�1, ⇡i)� (Ti � fi) = �

NX

j2⇡1:t�1\i

d
�1
ji .

The potential reward information is helpful for then distinguishing what choices are valuable be-
cause they specifically affect the current policy, through complementarity of substitution effects.
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Additional details are in Appendix Section A.2.1 and I quantify the numerical contribution of this
component in Section 6.4.

6 Numerical Experiments - Evaluating Optimality

I evaluate performance in two dimensions: the difference in objective value and compute time.28 I
refer to V⇡x (s) as the cost of policy x in problem instance s. To compare policies I use the following
measure

Optimality Gap (x, y|s) ⌘ V⇡x (s)� V⇡y (s)
1
S

P
s V⇡y (s)

· 100 (18)

where x and y are distinct policies and s is an instance of the problem. Effectively, I am evaluating
the difference in the objective function and normalizing by the mean objective value across problem
instances and scaling to get a “percentage” deviation interpretation.29

Producing Solutions from Policy Functions There are several ways to use the stochastic
policy function to deliver solutions. First, there is greedy decoding which takes the policy with
the highest probability. Second, there is sample-many decoding which samples many times from
the policy distribution, evaluating each policy, and proceeding with the best one.30 Third, there
is ensemble decoding which trains many policy functions, evaluating each using greedy or sample-
many decoding, and taking the best policy across all these evaluations. The intuition behind this
third approach is that models are each initialized to random parameter values and exposed to a
random sample of problem instances. This may cause certain models to be adept at a subset of
problems, so by pooling policy functions one can maximize performance across a wider distribution
of problems.

6.1 Input Sourcing & Plant Location

For the Input Sourcing and Plant Location problem from Section 3.1, policies generated from the
trained policy function are within 0.01% and 0.04% of the best alternative solution for the 20
and 50 locations cases. Table 1 reports the mean optimality gap and compute time for several
algorithms.31 Performance is evaluated over a sample of problems, each with randomly generated
payoff terms {Ti, fi} and value of ↵ drawn from the interval [0.5, 1.5]. The submodular, ↵ < 1, and
supermodular, ↵ > 1, cases are separately evaluated.

28All model calculations are performed on a single NVIDIA GeForce RTX 4090. This is a consumer grade graphics
processing unit (GPU) that can be integrated in most desktop workstations. All computation that uses CPUs was
done on a 32-Core AMD CPU.

29I normalize by the mean objective value since in cases where the policy prescribes no action, the objective has a
value of 0 and the simple percentage deviation then becomes undefined. Therefore, using percent notation with this
measure is technically incorrect, but it helps with the intuition of what is being measured.

30Whenever I employ sample-many decoding, I also run greedy decoding and take the best policy.
31Appendix Figures (21)-(24) shows the distribution of optimality gaps across all problem instances.
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There are several algorithms I use as benchmarks. The first is brute-force optimization. This
involves evaluating all 2N possible combinations and taking the best option. I only do this in
the N = 20 case as it would be impossible to do for one of the larger problem instances. The
second is the Gurobi Mixed Integer Non-Linear Program optimizer (Gurobi Optimization, 2024), a
commercial software specifically designed for this general class of problems. Gurobi is well known
for providing tools for solving linear integer programs, where the solutions are proven to be globally
optimal. It has recently provided tools for solving non-linear problems which linearly approximate
the supplied non-linear objective and constraints. But, the solution to the approximate problem is
not guaranteed to be optimal for the original non-linear problem.

The third algorithm I consider is a bounding algorithm, either Jia (2008) in the supermodular
case or Arkolakis et al. (2023) in the submodular case. The fourth is a combination of the bounding
algorithm and simulated annealing. Simulated annealing involves probabilistically accepting random
perturbations to the policy based on changes in the objective function. Appendix Section B.6
provides a detailed description. The final set of algorithms, prefixed by “Model”, are those proposed
by this paper. This includes greedy decoding, sample-many decoding, and ensemble decoding of
the stochastic policy function trained on the same distribution of problem instances.32

The best model-generated solutions are within 0.04% of the best found solution.33 The bounding
algorithms always return the global optimum in the supermodular case, and I closely replicate these
policies with mean optimality gaps of 0.01% and 0.04% for the 20 and 50 locations cases.34 In the
sub-modular case this is however not true, a large number of instances remain where the bounds
are not unique. Simulated annealing is able to close the optimality gap further but solutions remain
far from the optimum.35 The policy function is able to overcome this problem, producing optimal
solutions with a gap of 0.00%.

6.2 Oligopoly in Input Sourcing and Plant Location

For the Oligopoly Input Sourcing and Plant Location problem from Section 3.2, policies generated
from the trained policy function are within 0.09% of the global optimum in the 20 location case,
and 120% or 46% better than a greedy search in the 50 and 100 location cases. Table 2 reports the
mean optimality gap and compute time for several algorithms.36 Performance is evaluated over a

32One feature of the transformer model I use is its invariance to input size. You could use the same model for
N = 20 as you use for N = 50, but in practice training separate models for various sizes works best.

33Brute Force is the best solution in N = 20 and represents global optimum. Gurobi is the best solution in N = 50,
but since it uses a linear approximation of the objective function it can not guarantee that the found solution is the
global optimum.

34This is consistent with Appendix Table A.4 of Antràs et al. (2017) where less than 0.001% of problem instances
in their baseline calibration had bounds that did not uniquely identify an optimum.

35Arkolakis et al. (2023) additionally provides a branching procedure for exploring the remaining possibilities
between bounds.

36Appendix Figures (25)-(27) shows the distribution of optimality gaps across all problem instances.
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Table 1: Input Sourcing and Plant Location Benchmarks

Method
N = 20 (Sub) N = 20 (Sup) N = 50 (Sub) N = 50 (Sup)
Cost Gap Cost Gap Time Cost Gap Cost Gap Time

Brute Force -10.65 0.00% -10.39 0.00% (8m)
Gurobi -10.65 0.00% -10.39 0.00% (31s) -3.38 0.00% -42.71 0.00% (47s)
Bounds -10.20 22.48% -9.92 0.00% (85ms) -2.12 37.28% -42.71 0.00% (292ms)
Bounds + SA -10.39 12.88% -10.12 0.00% (25s) -2.63 22.37% -42.71 0.00% (51s)
Model - Greedy -10.65 0.00% -10.39 0.03% (3s) -3.32 1.84% -42.57 0.34% (17s)
Model - Sample Many -10.65 0.00% -10.39 0.01% (1m) -3.33 1.41% -42.69 0.04% (7m)
Model - Ensemble -10.65 0.00% -10.39 0.02% (18s) -3.38 0.00% -42.69 0.04% (2m)

Note. Time to complete 10,000 vectorized instances simultaneously. The optimality gap is between the

listed method and Brute Force for N = 20 and Gurobi for N = 50. The Cost and Gap are the mean values

across all instances. Sample Many uses 25 samples. Ensemble uses 7 separately trained models.

sample of problems, with a fixed set of parameters {✓, �, ", p̄} and randomly generated payoff terms
{Ti, fi}.37 Since the model does not feature strict substitutability or complementarity, bounding
algorithms will not work. I consider several alternatives.

First, I can still use a brute force search for the 20 location case, where all 2N possibilities
are evaluated. Second, I again use Gurobi, but display the results here to highlight its limits
for non-linear problems. This oligopoly problem introduces an additional non-linearity with the
determination of market share. Gurobi’s linear approximation performs poorly in this setting,
leading to poor solution quality. Third, I use a greedy search that iteratively adds the choice
which generates the greatest increase in the objective function, stopping when all remaining choices
generate negative returns. Fourth, I run a simulated annealing algorithm which stochastically
searches for a better solution starting from the greedy solution.

Policies are within 0.09% of the global optimum for simulations with 20 locations. For the 50 and
100 location version I benchmark to a greedy search; policies are 120% and 46% better in the 50 and
100 location case. Unlike the previous problem, this is a setting for which we have no theoretically
motivated algorithms. The non-linearities hinder standard optimizers like Gurobi, the presence
of complements and substitutes prevent bounding procedures from working, and the problem size
makes a heuristic algorithm like simulated annealing perform poorly given limited time. On the
other hand, this methodology outperforms all referenced algorithms and features compute times
amenable to estimation.

37I also fix the markup to �/ (� � 1) to avoid the additional fixed point computation. The insights about a change
from complementarity to substitutability still remain.
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Table 2: Oligopoly Input Sourcing and Plant Location Benchmarks

Method
N = 20 N = 50 N = 100

Cost Gap Time Cost Gap Time Cost Gap Time

Brute Force -1.83 0.00% (10m)
Gurobi -0.05 97.24% (53m) 0.21 113.81% (47m) 0.34 112.27% (23m)
Greedy -0.32 82.51% (242ms) -1.49 0.00% (7s) -2.81 0.00% (53s)
Greedy + SA -1.45 20.99% (13s) -1.67 -11.78% (24s) -2.89 -2.95% (1m)
Model - Greedy -1.82 0.70% (4s) -3.19 -113.61% (34s) -0.63 77.47% (5s)
Model - Sample Many -1.83 0.09% (1m) -3.29 -120.71% (14m) -4.10 -46.09% (2m)
Model - Ensemble -1.83 0.16% (22s) -3.20 -114.20% (3m) -1.07 61.96% (20s)

Note. Time to complete 10,000 vectorized instances simultaneously. The optimality gap is between the

listed method and Brute Force for N = 20 and Greedy for N = 50 and N = 100. Parameters are fixed to

✓ = 1.5, � = 8.0, " = 1.5, and p̄ = 0.1. Sample Many uses 25 samples. Ensemble uses 7 separately trained

models for N = 20 and N = 50, 4 models are used for N = 100.

6.3 Global Value Chains

For the Global Value Chain problem from Section 3.3, policies generated from the trained policy
function are roughly 1% better than the approximate global optimum returned by the dynamic
programming solution for the 20, 50, and 100 location cases. Table 3 reports the mean opti-
mality gap and compute time for several algorithms.38 Performance is evaluated over a sample
of 1,000 problems, with a fixed set of parameters {�j,↵j} and randomly generated payoff terms
{{Cj

n} , {⌧nm, fnm}}.39

The first benchmark algorithm I consider is the dynamic programming solution described in
Section 3.3. This method returns the global optimum up to the discretization error introduced by
turning a continuous state space into a grid. I next introduce a set of heuristic methods called
greedy M -level Search. This involves starting from the empty sequence and considering all possible
extensions of length M < J . The best found extension becomes the location of the next stage.
This process is repeated until the entire chain is constructed. Intuitively, this approximates an
optimization problem over NJ sequences with one of several shorter segments with length N

M .40 I
also consider a random and simulated annealing solution.

The trained policy function outperforms all the heuristic algorithms as well as the dynamic
programming algorithm, which returns global optima up to discretization error. It does so with a
fraction of the computational time. The greedy solutions take 0.2 seconds, roughly 18,000 times
faster than the dynamic programming solution.

I additionally report compute times by device in the last four rows of Table (3). Machine
38Appendix Figures (28)-(30) shows the distribution of optimality gaps across all problem instances.
39In practice, I randomly generate 2-D coordinates and make fixed and trade costs a function of the bilateral

distances between locations.
40I consider a value chain of length J = 10. The 3-level greedy search requires (J � 2)⇥N3 +N2 +N evaluations.

I look 3 steps ahead at each segment of the value chain with the exception of the 9th and 10th stages which require
looking 2 and 1 step ahead respectively.
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learning models are specialized for performance on hardware known as GPUs, but can run on any
more standard CPUs as well. Most machine learning workflows involve doing model training on
GPUs and model inference to produce solutions on CPUs. The GPUs are particularly adept at the
kind of parallel computation required for updating parameters with gradient information. On the
other hand, generating model output requires much less resources since I do not require gradient
computation. And, since CPUs are widely available they can be used at scale and in parallel for
this task. Since the largest computational burden in our applications is often estimation, which
conditions on a trained model, one can apply CPUs there.

Table 3: Global Value Chain Benchmarks

Method
N = 20 N = 50 N = 100

Cost Gap Time Cost Gap Time Cost Gap Time

Dynamic Programming 60.41 0.00% (2m) 57.34 0.00% (15m) 56.33 0.00% (60m)
Random 71.77 18.81% (8s) 71.20 24.17% (16s) 71.28 26.54% (41s)
Simulated Annealing 69.21 14.58% (1m) 68.73 19.86% (2m) 68.87 22.27% (6m)
Greedy - 1 Level 71.72 18.73% (13ms) 67.07 16.97% (24ms) 63.83 13.31% (47ms)
Greedy - 2 Level 66.83 10.64% (1s) 63.54 10.82% (2s) 61.15 8.56% (7s)
Greedy - 3 Level 63.46 5.04% (10s) 60.38 5.31% (1m) 58.95 4.65% (9m)
Model (GPU) - Greedy 59.98 -0.70% (33ms) 57.01 -0.57% (76ms) 55.80 -0.93% (202ms)
Model (CPU) - Greedy ... ... (278ms) ... ... (1s) ... ... (2s)
Model (GPU) - Sample Many 59.54 -1.44% (2s) 56.79 -0.96% (4s) 55.63 -1.24% (6s)
Model (CPU) - Sample Many ... ... (24s) ... ... (1m) ... ... (3m)

Note. Time to complete 1,000 vectorized instances simultaneously. The optimality gap is between

the listed method and Dynamic Programming for all instances. Parameters are fixed to {�j} ⌘
{3, 4, 5, 3, 4, 5, 3, 4, 5, 5} and {↵} = {0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.70, 0.75}. Sample Many uses

100 samples.

6.4 Model Training

Training the policy functions takes on the order of magnitude of minutes. The training procedure
was described in Section 4, but to summarize it involves evaluating the policy function on many
problem instances and updating its parameters to place more probability weight on better policies.
Table 4 provides information on how long it takes each model to process 10,000 unique problems
and Figures 1 and 2 as well as those in Appendix Section D.4 plot the optimality gap of a model
throughout training. In general, I require between 50,000 and 1,000,000 problem instance to con-
verge the policy functions - extrapolating from the times in Table 4 this means I generally require
on the order of magnitude of minutes to train.41

41The exception here is ISPL - Oligopoly with 100 locations which uses a sample-many baseline which is particularly
slow to construct. The use of this baseline is why Table (2) reports the best results for sample many decoding when
N = 100. Improving the training of this model is a work in progress.
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The second column of Table 4 reports the number of parameters in each model. In terms of
machine learning models, the models used here are relatively small - they can be optimized on
a personal workstation. The reason for the variability in model size is due to a meta-layer of
model training known as hyper-parameter tuning. Hyper-parameters are parameters that govern
features of the model and learning but are not directly used in producing model output. Appendix
Section B.7 describes hyper-parameter selection in more detail. A work in progress is fine tuning
the hyper-parameters to both settle on a universal policy function structure and stabilize training.

The third column of Table 4 highlights how crucial the dynamic decoding component developed
in Section 5.2.1 is to producing optimal solutions. This column displays the difference in mean
optimality gap between the same model trained both with and without the dynamic decoding
component. On the majority of problems I consider, the policy function approximation would not
be competitive without this new feature. The cases where this is not true is the Oligopoly Input
Sourcing and Plant Location model for 100 locations as well as the GVC models. The Oligopoly
model is able to achieve good performance since it uses an intensive training baseline, resulting in
long training times.42 The GVC model may be doing well because the machine learning model used
is tailored for sequential prediction problems, and the GVC problem alone requires a sequence of
decisions.

Table 4: Model Training

Model Time per 10000 Parameters (1000) Dynamic Decoding Difference

ISPL (20) 460ms 479 -66.34%
ISPL (50) 3s 677 -88.86%
ISPL - Oligopoly (20) 1s 2700 -12.75%
ISPL - Oligopoly (50) 2s 121 -123.32%
ISPL - Oligopoly (100) 3m 976 -1.01%
GVC (20) 6s 678 0.13%
GVC (50) 8s 678 0.08%
GVC (100) 11s 270 0.04%
Export (20) 2s 546 -42.63%
Export (50) 6s 477 -51.38%

Note. ISPL refers to Input Sourcing and Plant Location. The number of locations, N , is represented

in parentheses next to each problem name. A negative value of Dynamic Decoding Difference suggests

that the model trained with the dynamic decoding component is performing better than the model trained

without it.

42Appendix Section B.1 discusses why the baseline used for N = 100 slows training - it requires sampling from the
policy function many times.
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Figure 1: ISPL (N = 20) Figure 2: ISPL - Oligopoly (N = 20)

Note. Each line corresponds to a separate model trained under a new initialization of parameters and

sample of training problems. ISPL stands for Input Sourcing and Plant Location.

7 Estimation

The output of the methodology is a policy function which maps the state of a problem to an optimal
policy. The corresponding estimation problem is then given observed policies and environments,
how do I find the structural parameters that rationalize those observations. Suppose we have data
on policies
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i

 
and the environment that those policies were taken in

�
xD
f

 
- f here indexes

the decision-making agent here. Working with the model of Section 2, I might observe the export
decisions of firms,

�
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D
f

 
, and observe their revenues and distances between markets,
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xD
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. The

parameters I am interested in estimating are those that govern fixed costs and returns to scale
# ⌘ {�,↵, �}. I estimate # by solving
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where ⇥ are fixed from training and D is some distance measure between two policies. What
this amounts to is, conditional on a trained policy function, finding the value of # that results in
model-implied policies that are as close as possible to the policies I observe in the data.43 Note,
at this point I have already trained a policy function that understand how the value of structural
parameters alters the optimal policy; solving this estimation problem just requires using standard
global and local optimizers over #.

43See Appendix Section B.5 for an alternate estimation strategy from Duarte and Fonseca (2023) that estimates
an auxiliary model that directly predicts the relationship between parameters and moments.
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Approximation Error I am using an approximate method which is not guaranteed to return
the global optima to the objective. This is a necessary tradeoff as the brute-force optimization
problem is otherwise numerically intractable. However, this introduces an estimation issue if the
approximation error is systematically related to the structural parameters I am estimating, and I
believe that firms are finding the global optimum. By approximation error, I refer to the fact that
D
�
⇡, ⇡

D
�
6= D

�
⇡
Opt

, ⇡
D
�

where ⇡
Opt is the globally optimal policy, ⇡ is the policy prescribe by the

policy function, and ⇡
D is the policy observed in the data. I am only able to calculate D

�
⇡, ⇡

D
�
,

but minimizing D
�
⇡
Opt

, ⇡
D
�

is the true objective of estimation. It is hard to directly say anything
about this issue, but part of the purpose of the experiments in Section 6 is to show that these
methods are capable of regularly returning the global optima and hence D

�
⇡, ⇡

D
�
= D

�
⇡
Opt

, ⇡
D
�
.

7.1 Bayesian Estimation - Complexity and Optimality Tradeoff

The policy functional approximation may worsen as I increase the range of structural parameters
considered. For example, consider the input sourcing and plant location model from Section 3.1.
Two separate algorithms are required to bound the supermodular (↵ > 1) and submodular (↵ < 1)
cases. Likewise, it might be difficult for a single policy function to prescribe optimal policies over
a range of parameter values that includes ↵ > 1 and ↵ < 1. In practice the models are quick to
train, so an alternate estimation procedure where I re-optimize a policy function over a varying
distribution of parameters is feasible. To formalize this idea, I use a Bayesian estimation procedure,
where the prior and posterior of the estimates inform the range of parameters I should be training
over.

I start with a prior over the parameters of interest #, F (#). Suppose that the agent has
idiosyncratic preference for certain policies and maximizes

max
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I can then form a posterior for the parameter of interest:
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This motivates an estimation procedure where I start by training a model over a sample of problem
instances with parameter values sampled from a prior p (#). Once the policy function converges, I
use the observed policies to form a posterior over parameter values p

�
#|xD

, ⇡
D
�
. I then retrain the
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model over this new distribution of parameters, repeating until I converge to a posterior over #.

7.2 Quasi-Bayesian Estimation for Moment-Based Estimators

When estimating models of combinatorial choice, we often do not directly match the policies of a
specific agent. This is because agents are subject to idiosyncratic shocks that affect their payoff
from various choices. But, we have no way of knowing what the specific realization of those shocks
were for an agent in the data. That is, there are elements of x which I do not observe. Instead, we
try to replicate moments of the distribution of observed policies. This involves simulating agents
with a distribution of idiosyncratic shocks, and matching moments of their optimal policies to mo-
ments observed in the data. To be concrete, imagine firms are characterized by an idiosyncratic
productivity which affects their payoff from exporting. Although each firm’s productivity is un-
observed, we might believe the distribution of productivity in the sample in Pareto. Therefore,
we simulate firms from a Pareto distribution and compute moments of their optimal policies (e.g.
export probabilities) to be used in estimation.

Let us now consider estimation based on moments of the policy distribution. Let m({⇡f})
be some moment or vector of moments of the distribution of agent-specific policies {⇡f}. The
goal is to minimize the distance, D

�
m({⇡f (#,xD)}),m({⇡D

f })
�
, between model generated and

observed policy moments where ⇡f

�
#,xD

�
just specifies that model generate policies are a function

of parameters and other payoff relevant variables. Following Chernozhukov and Hong (2003), let us
then define a quasi-posterior:
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This is a quasi-posterior in the sense that I am forming a likelihood for an objective value, not some
structural shock to any agent’s payoffs or preferences.

The quasi-posterior is a useful object for estimation. First, it is still capable of guiding the
policy function optimization to a distribution of parameters for which the estimation objective
is relatively smaller. With a flat prior, the posterior is maximized precisely at the parameter
vector that minimizes D (·). Second, it turns a problem of non-linear optimization over # into one
integration. For this I can use a suite of Markov Chain Monte Carlo tools to get the posterior
distribution. This is relevant in my setting since the objection function D is discontinuous: it is
made up of finite agents making discrete decisions so for some small parameter changes it will not
change. This makes gradient-based optimization over # challenging.
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8 Empirical Application

The results in the previous section demonstrated how these tools can be used to solve arbitrary
combinatorial optimization problems to (near) optimality in a relatively short amount of time.
This aids in structural estimation by both allowing us to consider a richer set of models with
less restrictions on the interactions between choices, and speeding up optimization. As a proof of
concept, I estimate a static version of the export interdependence model from Alfaro-Urena et al.
(2023), where I introduce a mechanism for substitutability through scale effects in the exporting
firm. The extended model produces better model fit relative to a model with only complementarity
and generates qualitatively different substitution patterns in response to trade shocks.

Data The World Bank Exporter Dynamics Database contains time series export data for firms
in 70 countries. The publicly available aggregate dataset is constructed from firm-level customs
data, see Fernandes et al. (2016) for details. For 11 countries, the underlying micro data is available
to researchers which contains a time series of firm-product level export quantities and prices. I
focus the analysis on the 2006 panel of exporting firms from Mexico and only the top 20 export
destinations.44 There are 36,086 firms with an average total export revenue of nearly $7 million.
The average number of export destinations per firm is 1.65. Since I do not observe revenues for all
firm-destination pairs, all potential export values are estimated using firm and country fixed effects.
Appendix Section 10 describes the procedure in more detail and visualizes estimates.

8.1 Model

Consider a firm f located in a home market h, Mexico. It must decide on a subset of N countries
to export to, maximizing profits according to

max
{ i}22N

⇡f ({ i})�
NX

i=1

ifi ({ i}) .

The indicator i takes a value of 1 if the firm chooses to export to country i. The first interdepen-
dence I introduce, modeled following Alfaro-Urena et al. (2023), is a complementarity arising from
exporting to multiple proximate locations:

fi ({ i}) = ⌘ + ↵dhi � � (1 + �dhi)
NX

k 6=i

k exp (��dki) .

44These are the 20 locations for which I observe the most number of firms exporting. They account for 77% of
export events and 95% of export revenues.
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Here dhi is the distance between location h and i.45 Fixed costs are directly increasing in distance,
↵dhi. If the firm exports to additional markets nearby destination i, it enjoys a fixed cost reduction.
That fixed cost reduction depends on how far the destination is from the firm, �dhi. It also depends
on how close those additional markets in the choice set are to the destination, exp(��dki).

The second interdependence I introduce is a concavity in the profit function that captures
decreasing returns to scale a firm faces when exporting. As one possible mechanism, evidence for
increasing marginal costs, particularly in an exporting context, has been documented by Almunia
et al. (2021). I therefore posit the following functional form on profits:

⇡f ({ i}) =
 

NX

i=1

i�i (rfi + ⌫fi + !fi)

!1�✓

, (19)

which can be derived from an increasing marginal cost curve (see Appendix Section C.1). Here rfi is
the export potential of a destination i, ⌫fi is an idiosyncratic revenue shock, !fi is blocking shock,
and �i is a revenue shifter for countries belonging to NAFTA (USA and Canada). The revenue
shock is drawn from a multivariate normal distribution:

⌫fi ⇠N
�
0, �2

�

⇢ki =⇢0 exp (�⇢ddki) ,

where ⇢ki is the correlation in revenue shocks across locations. The blocking shock takes one of two
values, 0 or 1, with probabilities p and (1� p) respectively.

Equation (19) introduces a force for substitutability between export markets: additional pro-
duction pushes a firm up its marginal cost curve and reduces the profitability of further exports. If
the model just featured one of the two interdependencies, then one could use a bounding algorithm,
exploiting the respective supermodularity or submodularity of the cases. But, when I include both
interdependencies, then I no longer have theoretical properties to leverage for optimization. Hence,
I use the policy function approximation proposed by this paper to find (near) optimal solutions over
a distribution of relevant parameter values of payoff relevant variables.

Indirect Evidence of Substitutability Empirically validating increasing marginal costs typi-
cally relies on data on total production/sales (Almunia et al., 2021) or prices and utilization rates
(Boehm and Pandalai-Nayar, 2022). Since the EDD contains only export data, I present below a
pattern of firm export behavior that could be interpreted as underlying substitutability between
choices. If one believes that firms have increasing production costs as in equation (19), then there
exists an optimal scale for each firm at which point marginal profits intersect marginal revenue. If a
firm experiences a negative trade shock in one country that motivates exit from that market, then

45I use bilateral distance measures from Mayer and Zignago (2011). Alfaro-Urena et al. (2023) also projects costs
onto language distances and regulatory distances, but the authors find that physical distances capture most of the
fixed costs and interdependencies.
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it should substitute to another market where it receives similar demand.46

I test if the set of markets which a firm is entering and exiting are more similar in terms of
export revenue, when compared to the full set of entered markets for that firm. Specifically, for
each firm-year pair I calculate the sample standard deviation in observed export revenues in two
groups of countries. The first group, All Active Markets, includes export revenues in each active
market for that firm-year. The second group, Added & Dropped Markets, includes export revenues
in any newly added export market (i.e. this market was not serviced in the previous year) and
export revenues from the previous period in any newly dropped export market (i.e. this market
was serviced in the previous period but not the current one). Figure 3 plots the distribution of
standard deviations across firm-year pairs for each group.47 Note that there is lower variability in
export revenues for the set of countries that is being added and dropped, indicating these markets
are more similar than the set of countries typically being serviced by a firm.

Figure 3: Evidence for Substitutability

Note. For each firm-year pair the standard deviation in revenues is calculated for two sets of export

revenues. All Active Markets includes revenues for all markets active for that firm-year. Added &

Dropped Markets includes only revenues from last period for dropped markets and revenues from the

current period for newly added markets. Only All Market standard deviations are reported for firm-year

observations where Added & Dropped Markets are available.

46This may not always be the case depending on the structure of fixed costs. A firm might have previously been
exporting to a country with high fixed costs and high revenue potential. Now suppose a blocking shock prohibits
exporting to this country. If the country with the closest revenue potential has even higher fixed costs that make
participation unprofitable, the firm may choose to enter a country with lower fixed costs and entirely different revenue
potential.

47Appendix Figure 11 plots the distribution of median mean-squared error.
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8.2 Policy Function Training

Training a policy function to near-optimal performance requires only a small number of problem
instances, generally less than 50,000. The training time per 10,000 problems is 2 seconds.48 The
policy functions are trained over a pre-specified distribution of structural parameters and revenue
potentials, but the distances are fixed to only be those observed in the data. The policy function
takes as input the revenue for each choice, distances, and a set of parameters {✓,↵, �,�, �, ⌘}. The
parameters that determine revenues, {�, �, ⇢0, ⇢d}, do not directly enter the policy function, but the
resulting revenues do.

The policy function generates policies within 0.01% of the global optimum.49 In estimation, I
use the greedy decoding with an optimality gap of 0.03% - marginally worse policies than other
decoding strategies but faster compute time. The heuristic algorithms also perform well on this
problem - a greedy solution has a 0.67% optimality gap. To understand why, note that the median
firm in my setting exports to one location - typically the US. Therefore, interdependence between
choices has limited scope to affect policies - most firms choose the location which on its own
generates the greatest profits. A greedy solution will generally only fail when complementarities
make a set of individually worse choices significantly better when made together. For example,
despite the fact that the US might have high unilateral profit for a firm, it could make a higher
profit by simultaneously exporting to several South American countries (e.g. Brazil, Venezuela,
and Columbia) and enjoying the lower fixed costs generated by the model’s complementarities. In
practice, this situation is rarely encountered.

48See Section D.4 for examples of training curves and the range of parameters used.
49In Appendix Section D.3.4 I present optimality results for the N = 50 case. A global optimum is not available,

but the Gap with a greedy algorithm is -11.19%.
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Table 5: Performance - Summary

Method
N = 20

Cost Gap Time

Brute Force -493.70 0.00% (15m)
Greedy -490.40 0.67% (1s)
Greedy + SA -491.16 0.51% (10s)
Model - Greedy -493.53 0.03% (1s)
Model - Sample Many -493.62 0.02% (34s)
Model - Ensemble -493.66 0.01% (16s)

Figure 4: Performance - Distribution

Note. Time to complete 1,000 vectorized instances simultaneously. The optimality gap is between the

listed method and Brute Force for all instances. Sample Many uses 25 samples. Ensemble uses 11

separately trained models. For the distribution of parameters used to evaluate optimality see Appendix

Section D.4.4.

8.3 Estimation

I use both a Simulated Methods of Moments and Quasi-Bayesian estimator as described in Section
7. The moments used in estimation are largely drawn from Alfaro-Urena et al. (2023) with some
modifications made since I am using a static model and have an additional parameter in ✓. Moments
are weighted based on first-step estimates. The details are in Appendix Section C, and the referenced
paper has further details on the identification arguments behind this choice of moments. I estimate
two versions of the model: one unrestricted which I refer to as the baseline model, and a second
where I restrict ✓ to be 0. This second model features only positive complementarities between
choices and could be solved using a bounding algorithm.

Table 6 reports estimates for both models and both estimators. The introduction of substi-
tutability in choices alters the parameter estimates to make fixed costs, a, smaller and blocking
shocks, p, more frequent. In a model with only complementarity, exporting begets more exporting.
High fixed costs and frequent blocking shocks are necessary to keep firms from exporting to too
many markets. By introducing increasing marginal costs, firms have an alternate limiting factor for
exporting - their limited scale of production.

In Appendix Section C.6 I assess how well identified the parameters are by varying each pa-
rameter individually and plotting the change in the objective function. Generally, none of the
complementarity or correlation parameters, {�, �,�, ⇢0, ⇢d}, are precisely identified - featuring flat
objective function variation over a wide range of parameter values. This exercise assures us that
complementarities can not be that strong, if they were the number of export events and their geo-
graphical correlation would be much stronger. Otherwise, the scope for complementarities to affect
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decisions is limited in the model. Firms export to only a few locations, and for changes in the
strength of complementarity to induce changes in export behavior rely on very specific conditions.
A firm has to be at the margin to enter a set of export markets which can only be profitable when
jointly exported to.

Table 6: Estimates

Estimate � ↵ � ✓ � � p ⌘ ⇢0 ⇢d �

Simulated Method of Moments

Baseline 4.25 7.99 3.34 0.25 2.50 30.00 0.48 8.72 0.49 0.51 2.51

(1.11) (0.25) (0.05) (0.00) (0.60) (0.50) (0.01) (0.93) (0.21) (0.24) (0.07)

✓ = 0 4.16 14.43 3.27 0.00 2.45 18.24 0.66 9.41 0.16 0.82 2.49

(0.93) (1.00) (1.46) (0.00) (1.11) (12.93) (0.08) (1.34) (0.08) (0.16) (0.65)

Quasi-Bayesian

Baseline 2.96 8.78 5.59 0.28 4.19 30.46 0.52 6.75 0.52 0.49 3.41

(0.90) (3.55) (3.41) (0.07) (2.27) (9.38) (0.08) (2.07) (0.26) (0.27) (0.93)

✓ = 0 3.00 12.56 6.02 0.00 4.53 15.20 0.67 7.25 0.38 0.54 3.53

(0.89) (2.02) (3.54) (0.00) (2.35) (3.47) (0.02) (1.99) (0.25) (0.26) (0.91)

Note. Baseline model estimates allow ✓ 2 [0, 0.5] while ✓ = 0 fixes ✓ to be 0. SMM standard errors are

from 50 re-estimates of the model with bootstrapped simulation shocks. Quasi-Bayes standard errors are

the standard deviation of the posterior distribution. See Appendix Section (C) for details.

Figure 6 plots the function � (1 + �dhj) exp (��dkj) where j is the country in the legend and dkj

is the distance represented by the horizontal axis.50 The ✓ = 0 model produces quantitatively similar
results to Alfaro-Urena et al. (2023). To compare, note that Mexico and Costa Rica, the subject
of the others’ data, are 12.4 and 14.0 thousand kilometers from China. A firm which exports to
China gets a 8 thousand USD savings from exporting to another country 500 km away from China.
By the authors estimates, the savings for a firm in Costa Rica in the same situation appear to be
roughly 14 thousand.51

Figure 5 plots the model-generated and observed export probabilities. These moments are not
targeted in estimation, and therefore serve as a validation exercise. The mean-squared error between
observed and model-generated export probabilities of the baseline model is 0.033 while that of the
✓ = 0 model is 0.178. The baseline model struggles the most to generate sufficient exporting
to distant markets in Europe and Asia. In Appendix Figure 9 I plot the revenue potential of a
country against its distance to Mexico. In the data firms make very little revenue from participating

50The complementarity is represented in terms of 100s of USD, so it needs to be scaled down by a factor of 10 to
get Figure 6.

51The curves I plot are quantitatively much different from the authors at distance less than 500km, but in the data
the average country’s nearest neighbor is about 500km so this is not a particularly relevant range of estimates.
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in these distant markets - making it hard to generate the necessary patterns. There is likely
some unaccounted for factor affecting exporting, e.g. foreign multinationals with plants in Mexico
importing back to their home country.

Figure 5: Model Fit Figure 6: Complementarity Estimate

Note. The Export Share is the percent of exporters who have a destination in their export set. For

example, 81% of exporting firms have the USA as an export destination and hence it has a value of 0.81.

8.4 Counterfactual

To quantify the importance of having increasing marginal costs in the model, I consider one coun-
terfactual - I apply a negative revenue shock and blocking shock for exports to the US. Figure 7
plots the change in export probability by country under this counterfactual for the baseline and
✓ = 0 model. First, note that in a model with only complementarities, there are two reasons to
expect a change in exporting to non-US markets. A market is either dropped because its export
shock is correlated with the US, or because exporting was previously only profitable due to a com-
plementarity generated from simultaneously exporting to the US. There is no reason why a firm
should start exporting to a location which it was previously not exporting to. By contrast, in the
baseline mode with ✓ > 0, when a firm drops the US from its export basket it can substitute its
export capacity to another market. This leads to starkly different predictions, markets which see
net exit under ✓ = 0 now see large entry.

The presence of substitutability also generates heterogeneity in export response. Figure 8 plots
the number of new entry and exit events by market in both models. To reiterate, a model with
only complements can not generate new export events from a negative shock to another location.
The same is not sure of the baseline model. There we see two broad types of changes in exporting.
There are firms which were previously exporting to markets close to the US (e.g. Canada and
Guatemala) because they enjoyed a complementarity from selling to all markets. When the US is
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blocked, these markets are dropped - hence the large exit responses for Canada and Guatemala. On
the other hand, there are firms which exported to the US, but did not have the capacity to export
to additional markets. For these firms, dropping the US leads to entry of new markets - hence the
large entry responses.

For a concrete example, let us consider a food processing facility in Mexico that sells agricultural
products to the US market. The size of this firm is limited by its access to land, the cost of capital,
local labor markets, and numerous other factors. It chooses to sell its limited production capacity
to the US, the most proximate and largest market. If I block this export link, then the firm will sell
its output to alternate markets like Canada or Guatemala. A model with only complementarities
does not permit this kind of substitution.

Figure 7: Change in Export Probability Figure 8: Change in Export Events

Note. The Change in Export Probability is calculated as the percentage point change in the same set of

exporting firms. New Export Events are normalized so that a value of 1 is equivalent to 1% of total

export events across all firms and markets.

9 Conclusion

Summary This project contributes a computational method for solving and estimating models
of combinatorial choices. This method is competitive with existing solution techniques on problems
in the trade literature, but is applicable to a wider class of models since it relies on no a-priori
theoretical assumptions. This opens the door for richer quantitative trade modeling that can more
realistically represent the decision making process of firms and provide new counterfactual insights,
as I demonstrated in an example of export market entry. It also lowers the barrier of entry for
developing new models on combinatorial choice, as they no longer have to be accompanied by a
novel algorithm but can instead just employ this solver. The numerical results presented here
also provide a useful benchmark for future research that attempts to improve on these methods or
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explore other algorithms for solving combinatorial optimization problems in trade.

Ongoing Work Industrial Organization has developed progressively richer demand systems for
discrete choice models. Such models generate more realistic substitution patterns, crucial for gen-
erating more accurate counterfactuals. Yet, in trade we often stick with variants of CES demand
systems which have numerous theoretical advantages, but constrains the type of substitution pat-
terns that our models can generate.52 Since trade counterfactuals involve tariff changes, where
substitution patterns are critical, IO-style demand systems likely have something to offer.

The model I propose is one of firms’ demand for imports of various origins based on the char-
acteristics of the trading parties. For example, consider a clothing distributor in the US selling
inexpensive clothing. It imports from Bangladesh and India. One can view this transaction as the
results of preference from a characteristic demand system with heterogeneous firms. In this case a
firm from a particular sector, clothing, has a preference for a characteristic, low-skilled labor. Two
countries abundant in this characteristic are Bangladesh and India.

Directly using tools from IO poses some challenges, demand estimation is largely developed to
address discrete choices problems. The first challenge, firms demand a combination of products from
a combination of countries - and the decision to import from any one country is likely related to the
others. Imports may be complements or substitutes depending on characteristics of the countries
and the importing firms. The second challenge, importing involves an extensive margin choice
that endogenously generates zero input shares. This biases any estimates that just use intensive
margin input shares to recover preferences. What this paper provides is a method that is able to
reconcile the combinatorial problem faced at the extensive margin, particularly when faced with
flexible substitution patterns or complementarities at the intensive margin. See Appendix Section
E for a longer discussion that includes a stylized model, formalization of the estimation challenges,
and sketch of an empirical model.

Directions for Future Research Most models of combinatorial choice in the trade literate are
partial equilibrium - we model the decision making process of firms in one country with fixed factor
prices. This setup is motivated partially by data - we have limited information on export and
import policies of firms in many countries. But it is also a decision motivated by computational
constraints - it is difficult to solve for a fixed point equilibrium that requires solving combinatorial
optimization problems for many firms in many countries. These methods could open the door to
richer general equilibrium models, by allowing us to compute equilibria in reasonable time.

All the models I have presented are static, but these methods can likewise be applied to dynamic
choices. However, dynamic models like Alfaro-Urena et al. (2023) require one to make a sequence
of a set of decisions, which increases the number of choices the model needs to make by a multiple

52Adao et al. (2017) estimates a random-coefficients demand system for imports where they use GDP-per capita as
a dimension along which preferences vary. They do so using aggregated trade flows, which obscures the underlying
extensive-margin decisions.
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of the number of time periods. To avoid having to predict N ⇥ T decisions, I can model a policy
function which makes N choices as a function of a sequence of future variables and roll out this
policy T times - once for each period. I then optimize the policy function taking the cumulative
discounted reward of these T rollouts.

Lastly, the machine learning literature evolves rapidly and there are thousands of new innovations
to model architecture and training schemes that come out every year. I have tested one of many
possible models and training algorithms, there are likely improvements to be made. This paper
provides a starting point, but future implementations of these methods will have access to better
models. For instance, there is recent work (e.g. Luo et al. 2023 and Sun and Yang 2023) on scaling
to CO problems with 100s or 1000s of choices. In spatial settings where firms are making choices
over a granular geography like cities or countries, these models can be applied. Relatedly, there
is work to be done on leveraging more computational resources to enable larger problem instances
and faster estimation. This paper’s results are from one desktop workstation, but model training
and estimation can all be parallelized across multiple GPUs - available either on university clusters
or for rent from cloud service providers.
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A Machine Learning Model Details

The model architecture I employ is largely drawn from Kool et al. (2019). This section outlines the
precise model structure.

A.1 Encoder

Let ` 2 {1, ..., L} denote the layers of the network and i 2 {1, ..., N} a choice in the optimization
problem. There is an initial embedding

h(0)
i = W

x
xi + b

x (A.20)

where if xi has dx dimensions, then W
x has dimensionality dx ⇥ de where de is the embedding size.

There is then several attention layers which each contains the following operations:

ĥi =BN
`
⇣
h(`�1)

i +MHA
`
i

⇣
h(`�1)

1 , ...,h(`�1)
n

⌘⌘

h(`)
i =BN

`
⇣
ĥi + FF

`
⇣
ĥi

⌘⌘ (A.21)

The attention layers contains three components. First, there is the multi-head attention MHA (),
second there is the batch normalization BN (), and finally there is the feed forward network FF ().
The multi-head attention starts by comping a query, key, and value which are the product of the
embedding with a matrix of size de ⇥ de.

qi = W
Qhi, kj = W

Khj, vj = W
Vhj (A.22)

I split the query, key, and value into various heads by subsetting the dimensions. So if de = 128

and there are 8 heads, then the query, key, and value for the mth head have size dm = 16 are are
the (m� 1)⇥ 16 + 1 through m⇥ 16 dimensions of the full query, key, and value. For each head I
compute new embedding with the following sequence of operations:

u
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dk

(A.23)
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I then collect the output of each head back into an embedding of size de, multiply it by another
matrix of size de ⇥ de to conclude the MHA operation

MHAi (h1, ...,hN) ⌘ W
H
�
h1

i , ...,h
M
i

 
+ b

H
. (A.26)

The batch normalization, BN (), normalizes the embedding values by subtracting the mean value
across dimensions and dividing with the variance. The resulting values are then rescaled and
transformed with learned parameters. Finally, the feed-forward consists of

FF (hi) = W
2ReLu

�
W

1
hi

�

where W
1 has dimensionality de ⇥ df and W

2 has df ⇥ de. The function ReLu is known as an
activation function which just takes max (0, x) along each dimension of the transformed embedding.

A.1.1 Edge Information

Suppose there was bilateral information I had in the form of a tensor yij. I can likewise embed this
information:

⌧ ij = W
y
yij

where W
y has dimensionality dy ⇥ de and dy is the number of edge-level variables. I can either use

this in the attention mechanism
u
m
ij =

qm
i k

m
j ⌧

m
ijp

dk

,

or I can have separate edge embeddings that I iteratively update alongside the node embeddings.

A.2 Decoder

I define the aggregate node embedding as the mean embeddings from the final layers of the encoder:

h̄
L
=

1

n

NX

i=1

h(L)
i . (A.27)

Let h⇡t�1 and h⇡1 denote the encoder embeddings for the previous and initial policy choices respec-
tively. Additionally, ket Dt denote additional dynamic components of the context and let djt denote
dynamic components of node j, The context vector is then given by concatenating these vectors

h̄c =

8
<

:

n
h̄

L
, h⇡t�1 , h⇡1 , Dt

o
if t > 1

n
h̄
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,vb
, Dt

o
if t = 1

(A.28)

with va
,vb as learnable vectors for the initial choice.
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A.2.1 Dynamic Potential Decoding

To compute the choice probabilities I again use a final multi-headed attention layer. Here I add a
component to the decoder I refer to as dynamic potential. Given the current state st�1 I compute
the change in the objective under each possible addition to the policy. That is, I compute

dj,t = R (st�1, ⇡j)

where R (st�1, ⇡j) is the reward function described in Section 4. I then compute the query, key, and
value combining the embedding with this dynamic component:

qc = W
Qh̄c, kj,t = W

Khj +W
Kd

dj,t, vj,t = W
Vhj +W

Kd
dj,t (A.29)

Using multi-head attention once again I get an updated query:

u
m
cj,t =

qm
c k

m
j,tp

dk

(A.30)

a
m
cj,t =

e
um
cj,t

P
j0 e

um
cj0,t

(A.31)

hm
c,t =

X

j

a
m
cj,tv

m
j (A.32)

h̄
F
c,t ⌘ W

H
�
h1

c,t, ...,h
M
c,t

 
+ b

H (A.33)

And finally, I get choice probabilities using this query and the previously computed keys:

qc,t = W
Qh̄

F
c,t (A.34)
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B Additional Computational Details

B.1 Baselines

Recall the objective for policy function training:

max
⇥

s

h
p(⇡|s;⇥) [V⇡ (s)� b (s)]

i
.
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The baseline, b (s), constructs a separate solution for the optimization problem that I use to bench-
mark performance for the current iteration of the policy function. This helps in optimization by
reducing the variance of the gradient and helping identify when parameters should be increased
or decreased. The simplest baseline I experiment with is the exponential baseline, which tracks
previous values of V⇡ (s0) and computes b (s0) as a weighted average of past realizations of V⇡ (s0).
The second baseline, developed by Kool et al. (2019), is known as the greedy rollout baseline. Re-
call that the policy function is a stochastic policy function that returns a probability weight over
optimal policies. The greedy rollout baseline involves sampling policies from the policy function
to determine V⇡ (s), and taking the policy with highest probability as b (s). A natural extension
of this which I develop is a sample many rollout baseline, which samples several policies from the
policy function, takes the best one, and uses that as the baseline. This is the baseline I use for
ISLP - Oligopoly 100, and hence why I see poor greedy performance in that problem. But note a
sample-many baseline requires as many additional iterations of the model as number of samples,
this meaningfully reduces training speeds, as seen in Table 4.

Another baseline I use is known as Policy Optimization with Multiple Optima (POMO) from
Kwon et al. (2021). This baseline leverages the fact that the model prescribes a sequence of actions,
but some CO problems require only a set of actions where the order of actions does not matter.
Therefore, I can force the policy function to start from separate initial actions, and if any initial
actions are part of the optimal set, then ideally the policy function should still return the same
optimal set despite the different starting points. The baseline is then the average value of the
objective function across all initializations of the policy function. For a detailed discussion of the
advantages of this baseline please see the reference work above.

There are two, related issues with using POMO that I attempt to innovate around. The first,
is that you should ideally only include in the baseline the initial actions that will be part of the
final optimal solution. This is not an issue for CO problems like the traveling salesman problem
where every choice will be part of the optimal solution, but in my case it remains. A secondary
problem with having too many initial actions in the baseline is the computational memory cost.
For every problem instance I consider I have to keep track of the gradient of the final outcomes
with respect to the 100s of thousands of parameters of the model. But since I are now considering
multiple evaluations of the same problem, every time I sample a problem to approximate the outer
expectation s I need up to 100 times the memory in the N = 100 case since there is a gradient
associated with each initial starting point. This additionally becomes a problem come estimation,
since I have to again compute a policy from many starts which raises computation time.

I proceed with a strategy similar to Dynamic Potential Decoding. I first compute the marginal
benefit of each choice on its own:

dj = R (s0, ⇡j) .
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I then assign a probability to each action according to

Pr (⇡1 = ⇡j) =
exp (�dj)P
j0 exp (�dj0)

where � is a scaling parameter. I then sample starting points from this distribution, where the
number sampled is less than N . This raises the probability that I have good initial starts and lower
the number of starts I have to compute with.

Another strategy I employ is occasionally using a heuristic algorithm as the baseline, particularly
during the start of training. I set a probability that the current batch of sampled states uses a
heuristic algorithm as baseline and allow this probability to go to 0 as training progresses. This is
almost like doing supervised learning at the start, and once I have a moderately informed policy
function, allowing it to explore better possible policies.

B.2 Using Theory to Guide Optimization

Even when one can not analytically characterize a solution to a combinatorial optimization problem,
theory might imply certain properties that the solution should satisfy. For example, let us introduce
a firm-level productivity shifter ' > 0 to the input sourcing and plant location problem of Section
3.1:

max
{ i}22N

 
X

i

i'Ti

!↵

�
X

i

ifi.

Antràs et al. (2017) provides the following proposition: when ↵ > 1, the sourcing set is increasing
in ' - i.e. a more productive firm sources from at least all the locations of a less productive firm. I
can then add an additional term to the objective:

Theory Loss (⇥|s) = � p(⇡|s;⇥)

"
NX

i=1

(⇡i ({{Ti, fi} ,↵})� ⇡i ({{'̄Ti, fi} ,↵})) {↵ > 1}
#

where '̄ > 1 and ⇡i takes a value of 1 if choice i is made as part policy ⇡. This loss takes non-zero
values when a firm with lower productivity makes choices that a firm with higher productivity
would not make, conditional on ↵ > 1. Adding this term to the objective ensures I am optimizing
the original objective function and satisfying the theoretical predictions of the model. In principle,
this loss, by placing additional constraints on the policy function, should guide the optimization of
the policy function to a subset of the policy function space where the optimal policy ought to exist.
Appendix Section D.2 presents numerical experiments for optimization using theory loss.
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B.3 Supervised Learning

The application of machine learning models to approximate rich functions in economics is not new.
Most commonly, neural networks are used in regression tasks where I want to predict an outcome
given covariates. These models are trained via supervised learning - a training paradigm where I
have access to a training dataset of desired output. Formally, if one observed states s and optimal
policies for those state ⇡

⇤ (s), then one would be solving

max
⇥

s⇠F (s)

h
⇡⇠p(⇡|s;⇥) [D (⇡⇤ (s) , ⇡)]

i
,

where D is some distance measure between two policies. In this project, I do not have access to
the optimal policy and instead am using a simulated reward scheme to guide a policy function to
an optimal solution.

There is a role for supervised learning in finding faster solutions to problems for which we
have alternate, but slower means of generating optima. For instance, Vinyals et al., 2015 trains
a policy function for the Traveling Salesman Problem where a specialized algorithm was used to
generate a training dataset of optima. As one possible application in economics, Alfaro-Urena et al.
(2023) reports a compute time of over 13 minutes for finding the optimal solution to their dynamic
exporting problem. A training dataset could be generated by computing solutions using the author’s
algorithm, and a model could be fit to replicate these solutions given the relevant inputs.

B.4 Value-Based Learning

In value-based learning we parametrize an action-value function known as a Q function.The Q

function maps the current state and an action taken to some value consisting of an immediate
reward and the continuation value from corresponding actions:

Q (st, at) = R (st, at) + max
at+1

Q (st+1, at+1) .

The value function naturally follows as V (st) ⌘ maxat Q (st, at). We posit a parametric function
Q (·;⇥) and choose the parameters ⇥ so to optimize

min
⇥

s,a

⇣
Q (s, a;⇥)�

⇣
R (s, a) + max

a0
Q (s0, a0;⇥)

⌘⌘2

.

If we are able to approximate the true Q, then the optimal policies can be derived by iteratively
maximizing Q at each state. This optimization problem ends up being relatively easy since Q (·|⇥)

is specifically designed to be easily differentiable with respect to ⇥.
Early work on CO with ML models started with value-based learning - notably Dai et al. (2017).

The literate has since convergence on policy-based learning. First, the policy function is much closer
to the object of interest for someone concerned with optimization, so modeling it directly can involve
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less overhead than modeling a Q function which needs to understand off-optimal value-action pairs.
Second, by modeling a stochastic policy function, I can directly incorporate experimentation in the
learning process by sampling from the policy function. It also helps with inference by allowing the
model to direct the search down multiple possible solutions when there exists local minima with
similar objective values.

B.5 Alternative Estimation Strategies

In practice, we often use a simulated method of moments procedure to estimate structural pa-
rameters in CO problems where we match moments of the model generated policy distribution to
observed combinatorial choices. A problem with this approach however is that the resulting objec-
tive function may not be smooth. Namely, a small change in the parameter of interest may not
induce any policy changes, since we only simulate a finite set of actions and each action is discrete,
and hence may result in a zero gradient. As a possible workaround, I can use the insights of Duarte
and Fonseca (2023) where a second model is fit to predict the relationship between parameters
and moments. This requires a training dataset which would be generated by evaluating the policy
function on a grid of relevant parameter values. This second model would be easier to optimize
over due to this differentiability and faster evaluation time.

B.6 Simulated Annealing

In simulated annealing I stochastically update the policy based on how deviations improve the
objective value. I start by setting some initial temperature T0 and initializing the policy to some
sequence of actions: {⇡1, ..., ⇡T}. I then randomly sample an element of the policy to change to a
different choice. I then evaluate the difference in the objective value under these two policies:

Energy Difference = V (⇡0)� V (⇡) .

I accept the change with probability

Pr (Accept) = min

⇢
exp

✓
Energy Difference

T

◆
, 1

�

If the energy difference is positive, then I always accept otherwise we accept with some probability.
I then update T

0 = T ⇥ ↵ where ↵ < 1 to lower the probability that a negative innovation is
accepted.

I choose the initial temperature as follows. I first implement a greedy solution to the CO problem
at hand. I then calculate the standard deviation of objective values, �, and set

T0 =
�

| log (0.2) | .
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This means that a change which decreases the objective value by 1 standard deviation is accepted
with a probability of 20%. I then choose ↵ = 0.9995 and update T only every 5 iterations so
that after 10000 iterations the probability of that same 1 standard deviation change being accepted
is 100 ⇤ exp(�1/(0.99952000 ⇥ T0)) ⇡ 1%. One issue with initializing in this way is that I call �
the standard deviation in costs, but when problem instances are drawn with varying structural
parameters making a comparison in objective values across problem instances can be somewhat
meaningless. To be more precise, one can set different simulated annealing parameters based off of
a more relevant distribution of payoffs for the particular problem instance at hand.

A final note on using simulated annealing in combination with bounding algorithms. The lower
bound tells you which elements must be in the solution and the upper bound tells you which
remaining elements are eligible to be in the solution. I use this information to force lower bound
choices to be in the solution, and only allow choices in the upper bound to be considered during
optimization.

B.7 Hyper-Parameter Search

In Table (4) I reported the model sizes for which there is considerable heterogeneity. This arises
from the fact that I use slightly different model structure in each model. The model structure varies
as a function of hyper-parameters which control the number of embedding dimensions, the number
of encoder layers, the size of hidden layers in the feed-forward layer, the presence of dynamic
decoding components, and the presence of edge attention mechanisms. There are additionally
hyper-parameters that shape the speed and variability of training. This includes the batch size, the
POMO size, the use of gradient and probability clipping, the learning rate, the decay of the learning
rate, entropy regularization, the baseline used, and the probability of using various heuristics as
replacement for the baselines. I perform a grid search over these hyper-parameters with the final
optimality gap on a validation dataset used to distinguish the best combination.

C Additional Estimation Details

C.1 Functional Form for Profits

Claim. A profit function concave in revenues can be micro-founded with increasing marginal costs.

Proof. Suppose the exporting firm faces a fixed international price which I normalize to 1. Let
the marginal production cost be given by mc (q) =

�
1� q

�✓
�

where q � 1 and ✓ 2 (0, 1). Integrating
costs from 1 to q, I get c (q) =

�
1� q

1�✓
�
/ (1� ✓) + q � 1. I can write profits as ⇡ = q � c (q) ,

which yields ⇡ =
�
r
1�✓ + ✓

�
/ (1� ✓) .
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C.2 Firm and Country Size Distribution

The World Exporter Dynamics Database gives data at the firm-product-country level for export
revenues. Since I only observe export revenues in active destinations, I impute revenue potentials
by estimating the following model where I aggregate revenues to the firm-country level:

log rfj = �f + �j + "ij.

Here f indexes the firm and j the destination. Figure 9 plots the country fixed effect �j as a function
of distance from Mexico, and Figure 10 plots the firm fixed effect �f .

Figure 9: Country Potential & Distances Figure 10: Firm Potential

C.3 Alternative Measurement of Firm Choice Variability

Figure 11 plots the distribution of median mean-squared error for each firm-year in both groups.
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Figure 11: Evidence for Substitutability

C.4 SMM Objective

The moments I target in estimation are largely based off of Alfaro-Urena et al. (2023), with modifi-
cations made for the country of study and the fact that I only consider one distance measure. The
paper has some identification intuition for each of these moments.

The first set of moments is the average distance of active markets in two categories of destinations

mfj =yfj

�
dhj < d̄hj

 
dhj

mfj =yfj

�
dhj � d̄hj

 
dhj

I use d̄hj = 8 which roughly separate counties into North and South America for dhj < d̄hj and then
Europe and Asia for dhj � d̄hj,.

The second set of moments looks at the propensity to export to locations which are close to
other high-value markets. For this I define the aggregate export potential of a location as

AE
x2
j =

X

j0 6=j

�
d
x2
hj  dhj < d̄

x2
hj

 
Ej0

where Ej0 the country fixed effect recovered from regressing export revenues on firm and country
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fixed effects. The distance thresholds
�
d
x2
hj , d̄

x2
hj

 
are indexed by x2 and are given by

�
d
x2
hj , d̄

x2
hj

 
=

8
>>><

>>>:

(0, 0.8) if x1 = 1,

(0.8, 1.6) if x2 = 2,

(1.6, 2.4) if x2 = 3.

I then consider the export probability for countries which are nearby and far as a function of their
export potential:
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This gives me 6 moments for each x2 and hence 18 moments in total.
The third set of moments get the correlation in export choices across countries of similar firm

export potential
mfj = yfj

1

N

X

f 0

yf 0j {Q (Rf ) = Q (Rf )}

where Ei is the firm fixed effect recovered from regressing export revenues on firm and country
fixed effects. This gives me 4 moments, one for each quartile. The fourth set of moments get the
correlation in export choices across countries of similar export potential and proximity:

mfj = yfj
1

N

X

j0

yfj0 {Q (Efj) = Q (Efj0)}
�
d
x2
hj  djj0 < d̄

x2
hj

 
.

This gives me 3 moments, one for each x2. I compute the mean value of mfj across all locations
and firms. The final set of moments is the mean and variance in the number of destination markets.
The estimation objective is then to minimize the distance between model generated and observed
moments, weighted appropriately. I use the DIRECT as a global optimizer followed by a local
Nelder-Mead optimizer.

Weighting Matrix I perform two-step SMM and later two-step Quasi-Bayesian estimation,
where moment conditions are first weighted by the inverse square of the moment value observed in
the data. In the second step, I weight by the inverse of the covariance matrix for moments generated
by the first-step ✓ = 0 model. This matrix is used for both the second-step baseline and ✓ = 0

model. The estimation exercise is meant to address how our estimates would differ if we incorrectly
specified our model featuring complementarities only. Therefore, I use a common weighting matrix.
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C.5 Sampling and Standard Errors

There are two sources of sampling variability. First, since there are 33,901 firms I will not solve a
policy for each firm, but rather a sample of these firms. When I sample a firm, this just means I use
their firm-specific distribution of revenue potentials. Second, when I sample one of the firms in the
data, I will additionally draw a set of revenue and blocking shocks for each location. In estimation,
I draw 8,000 firms from the data and then draw shocks for each of these firms.

To get SMM standard errors, I keep the set of 8,000 firms fixed, but I bootstrap the revenue and
blocking shocks and re-estimate the model. For Quasi-Bayes, I keep the 8,000 firms and their shocks
fixed. The standard errors are then from the posterior distribution of the estimated parameters.
Therefore, the standard errors reported for both estimators quantify separate types of uncertainty.

C.6 Identification

In order to assess if the estimated parameters are properly identified, i.e. uniquely minimizing the
estimating objective function, I vary each parameter individually over the domain I restrict the
estimator to.
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Figure 12: Parameter Identification

Note. The dashed vertical lines indicate the parameter estimates under each model, the solid lines are

the log objective function values when varying the variable indicated in the title.
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C.7 Quasi-Bayesian Estimation

The quasi-bayes posterior is given by
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where m (·) is the vector of moments described in Appendix Section C.4, xD includes country revenue
potentials and distances, # is the vector of estimated parameters, and � is a scaling parameter.
The function D (·) is the standard SMM distance formula with a weighting matrix as described
in Appendix Section C.4. The scaling parameter helps control the acceptance rate of the MCMC
algorithm (Metropolis Hastings). When � is larger, parameters that result in worse objective values
are accepted with lower probability.

Each parameter #k 2 # is assumed to belong to a bounded space #k 2
⇥
b
L
k , b

U
k

⇤
. The prior
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and zero off-diagonal element. The initial proposal dis-

tribution is a multi-variate normal distribution with zero mean and diagonal covariance terms
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b
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k � b

U
k

�
⇥ 0.025

 
k
. After 2000 iterations, the proposal distribution is updated to be propor-

tional to the covariance of the generated Markov chain. It continues to be updated every 200
iterations. Any proposals outside of the allowed bounds for each parameter are discarded.

Figure 13 is a trace plot for the posterior posterior distribution. Figure 14 is the cumulative
acceptance rate for the proposal distribution. Figures 15 and 16 include trace plots and the posterior
distribution for the baseline model and the ✓ = 0 model. Each of the below figures has a burnin of
2000 iterations.

Figure 13: Posterior Trace Figure 14: Acceptance Rate
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Figure 15: Baseline Trace and Posterior Plots
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Figure 16: ✓ = 0 Trace and Posterior Plots

D Additional Numerical Results

D.1 ISPL Oligopoly Computation

Claim. If � � 1 > ✓ and "� 1 < ✓, then (7) is neither supermodular nor submodular.
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Proof. Suppose ck ! 1, then P = p̄. The price elasticity of revenue is then 1 � �. If instead,
ck ! 0, then P = pk and the price elasticity of revenue is 1 � ". The sign of the derivative of the
profit function with respect to

PN
i=1 iTi depends on (� � 1) /✓ in the former case and ("� 1) /✓ in

the latter case. The statement of the proposition follows.
Numerically, Figure (17) displays how (7) can be neither supermodular nor submodular.

Figure 17: Marginal Return from
P

i iTi Figure 18: Market Share

Note. Simulations parameters: � = 4, ✓ = 1.5, " = 1.5, and p̄ = 0.2.

D.2 Theory Loss

In this section I train an ISPL model with an additional term in the objective function motivated by
properties of the true policy function. Consider a value ↵ > 1, it must be the case that any choice
made at ↵ would also be made when I increase the parameter to some ↵+ " with " > 0. Therefore,
I can place an additional constraint on the objective function: it must maximize equation 4 and
any choice made for a value of ↵ greater than 1, must continue to be made for a larger value of ↵.
Formally, I add the following term as an additional loss

{(⇡i ({{Ti, fi} ,↵ + "})� ⇡i ({{Ti, fi} ,↵})) < 0} {↵ > 1} .

I include this Loss term for the first several batches of training before removing it. The idea here is
that we are looking for a policy function that maximizes equation 4 among the entire set of policy
functions that the model can approximate. That policy function is also part of the subset of policy
functions that feature this property regarding increasing ↵, which is a smaller set than the full set
of admissible policy functions. If I first move the training to this subset of policy functions, then I
can more quickly converge to the objective maximizing policy function.

In Figure 19 I plot examples of learning curves with the same initialization of parameters and
training data, but some are trained with this additional loss. The additional loss results in faster
convergence. However, this is not always the case. The average difference in log Optimality Gap
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across 250 trained models between models trained with and without the Theory Loss is plotted in
Figure 20.

Figure 19: Sample Learning Curves Figure 20: Median Learning Curve

D.3 Optimality Evaluation

The optimality gap is defined by Equation (18). A positive value indicates the policy given by the
legend performed worse than the reference policy, listed on the y-axis. The opposite is true for a
negative value. And, a value of zero indicates both methods return the same policy. The
optimality gap is evaluated in a distribution of problem instances and the values are sorted from
best-case to worst-case.

D.3.1 Input Sourcing & Plant Location
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Figure 21: Supermodular (N = 20) Figure 22: Submodular (N = 20)

Figure 23: Supermodular (N = 50) Figure 24: Submodular (N = 50)

D.3.2 Input Sourcing & Plant Location - Oligopoly

Figure 25: N = 20 Figure 26: N = 50 Figure 27: N = 100

D.3.3 Global Value Chains
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Figure 28: N = 20 Figure 29: N = 50 Figure 30: N = 100

D.3.4 Export Market Interdependence

Table 7: Algorithm Performance

Method
N = 50

Cost Gap Time

Greedy -2.43 0.00% (34s)
Model - Greedy -2.55 -1.35% (8s)
Model - Sample Many -2.74 -9.33% (8m)
Model - Ensemble (Greedy) -2.68 -6.40% (1m)
Model - Ensemble (Sample) -2.80 -11.19% (44m)

Figure 31: Algorithm Performance

D.4 Model Training

D.4.1 Input Sourcing & Plant Location

Figure 32: N = 20 Figure 33: N = 50
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D.4.2 Input Sourcing & Plant Location - Oligopoly

Figure 34: N = 20 Figure 35: N = 50 Figure 36: N = 100

D.4.3 Global Value Chains

Figure 37: N = 20 Figure 38: N = 50 Figure 39: N = 100

D.4.4 Export Market Interdependence

Table 8 displays the range of parameter values I train over. Table 9 displays the range of parameter
values I use to generate country revenues. Note, the model does not directly take as input parameters
that generate the revenues potentials: {�, p, ⇢0, ⇢d}. The model takes as input the distribution of
revenue potentials, so as long as these are generated in a way that is consistent with the method
used for estimation there should not be an issue with optimality.

Figures 40 and 41 plot learning curves for the 20-location and 50-location export market entry
model. There is considerable variability in training outcomes, a work in progress is tuning the
hyper-parameters of model training to stabilize training.

Table 8: Training Parameter Space

Parameter � ↵ � ✓ � ⌘

Bounds (0.0,5.0) (0.0,20.0) (0.0,20.0) (0.0,0.5) (0.0,10.0) (0.0,50.0)
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Table 9: Revenue Sampling Parameter Space

Parameter � p ⇢0 ⇢d

Bounds (0.0,50.0) (0.0,1.0) (0.0,1.0) (0.0,1.0)

Figure 40: N = 20 Figure 41: N = 50

E Firm-Level Import Demand System

E.1 Stylized Model

Each country is described by a vector of characteristics
�
x
c
j

 
where j 2 N indexes the country

and c 2 C the characteristic. For example, countries could be described by a vector of factor
endowments or the number of firms in various industries.53 A firm has a nested CES production
structure over the characteristics and countries:
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where �c is the elasticity of substitution across country-specific value of characteristic c and � is
the elasticity of substitution across characteristics. Suppose firms face an inverse demand function
p = AY

�1/⇢ and that sourcing from a country imposes a fixed costs fj. The firm’s optimization
problem is given by
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53Appendix Section E.4 provides one possible micro foundation based on the number of firms in various sectors.
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Claim. The degree of complementarity between countries depends on their vector of characteristics.
Two countries can be complements if they share the same characteristics and those characteristics
have low substitutability, or if they specialize in different characteristics.

Proof. See Appendix Section E.5.
For example, let us consider a steel plant located in the US. This firm requires two types of

inputs: raw materials in the form of iron ore and a suite of capital equipment needed to melt, move,
shape, and process that iron ore into steel production. Suppose that in the data I observed this
firm importing goods from two ISIC industries: C (Mining and Quarrying) and 29 (Machinery).
The iron ore input falls under ISIC C and is a highly substitutable input. However, the capital
equipment is imported under ISIC 29 and highly specialized to specific tasks of the firm and hence
not very substitutable. If there are fixed costs from importing, the firm might be unwilling to source
iron ore from say Brazil and Australia since they are effectively offering the same product. But if
Germany makes the best foundries and Italy makes the best steel presses, then as non-substitutable
ISIC 29 inputs the firm may be willing to import these products from their respective countries.
Regardless of the sourcing decision of capital equipment, the plant will need to source both iron ore
and capital equipment, these are highly non-substitutable - making sourcing from Germany/Italy
complementary with sourcing from Brazil/Australia.

E.2 Identification Challenges

In order to take the model closer to data, I introduce some heterogeneity to the preferences. There
are a few ways to do this, but right now I consider heterogeneous tastes for each characteristic-
country:
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where i indexes the firm and ⌫
c
i,j is a idiosyncratic preference for characteristic c in country j. To

highlight the identification challenge that arises when using only intensive margin export data, let
us suppose that a firm has ⌫

c
i,j = 08c 6= 1. For example, this might be a clothing distributor

which only cares about sourcing garments from countries with cheap low-skill labor, so the only
characteristic it is sensitive to is the endowment/price of this factor in a country.

The import shares this firm exhibits are then give by

�ij =
⌫
1
i,j ij

�
x
1
j

��1�1
�1

�
p
��
j⇣P

k ⌫
1
i,k i,k (x1

k)
�1�1
�1

�
p
1��
k

⌘ .

where ij are the sourcing decisions the firm. An issue arises since the firm is only going to select into
importing from locations with high x

c
j. That is,

⇥
x
c
j⌫

c
i,j|�ij > 0

⇤
6= 0, which will bias the estimates

of �1. Previous work on import sourcing which tries to estimate this kind of intensive margin
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regression has to argue that ⌫c
i,j is only realized after the extensive-margin decisions are made, e.g.

Antràs et al. (2017). This seems unlikely, especially if firms are making repeated transactions over
time - and part of the fixed costs I model might be information acquisition costs - where firms try
to reveal ⌫c

i,j.

Zeros in Trade Data. This approach to demand estimation, where I explicitly model the ex-
tensive and intensive margin decisions, connects to a broader issue of zeros in bilateral trade data.
Dingel and Tintelnot (2020) provides a useful summary of the general issue in spatial settings.
The standard rationale for zeros is that with a finite number of firms and stochastic idiosyncratic
preferences, you can end up in situations where no firm draws the necessary shock to source from
a location. The sourcing probabilities are still based on economic fundamentals, but it is sampling
which principally generates the zeros rather than an endogenous extensive margin choice. The
model I use will still feature idiosyncratic preferences that give rise to a stochastic sourcing pro-
cess, but the additional structure I place on preferences lets more of the sourcing decisions load on
characteristics and cross-country dependencies between choices.

E.3 Empirical Model

The CES structure used in this stylized example maps closest to the models of input sourcing in the
trade literature. But, a more flexible model would serve us better, especially if I want to capture
richer forms of cross-country substitutability. The basic structure of the model follows Berry et al.
(1995). Let i index the decision-making agent, j the country, and c a characteristic of the choices.
The utility a firm gains from each choice is then given by

uij =
X

c

�
c
ix

c
j +

X

c

X

c0

X

k

�
cc0

ik hk

✓
x
c
j,

n
x
c0

j0

o

j0 6=j

◆
+ ⇠j + "ij

where
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c
+
X

r
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c
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i �

c

�
cc0

ik =�
cc0

k +
X

r

zir↵
cc0

rk + ⌫
cc0

i �
cc0

k .

(E.1)

This is a random-coefficients demand system where I allow an agent’s preference for a character-
istic to vary depending on a vector of observed characteristics {zir}r and a dimension of unob-
served heterogeneity ⌫

c
i . What is non-standard is the inclusion of interactions between choices:

hk(xc
j,
�
x
c0
j0
 
j0 6=j

). Here I consider a set of functions each indexed by k, hk, which are various in-
teractions between the choice xj and the vector of other choices. This is how I generate all the
potential complementarity between choices. For example, let hk (·) = x

c
j

P
j0 6=j x

c0
j0 with �

cc0
ik > 0 and

x
c
j > 08j. This function captures a pattern whereby when more choices are added to the sourcing

set with high values of characteristic c, the utility gained from a choice which itself has high values

68



of c increases.
For the sake of tractability, I assume that the agent imports a continuum of goods and "ij is

drawn for each individual unit. Let ⌫i ⌘ {{⌫c
i }c ,

�
⌫
cc0
ik

 
c,c0,k

} collect all the relevant dimensions of
unobserved heterogeneity for agent i. The spending share of agent i on goods from country j is
then given by

�ij (⌫i) =
ij exp
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The unweighted market shares of each country are then given by

sj =

Z

i

�ij (⌫i) dF (⌫i) .

I finally model the firm’s extensive margin decisions as

max
j
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Here
�
d
c
j

 
c
is a vector of characteristics that are relevant for the extensive margin decisions of a firm

and gk are interactions of those characteristics. The Alfaro-Urena et al. (2023) model of fixed-cost
interdependence would fit under this structure if you let dcj be the relevant distance, language, and
trade agreement measures and g (·) be the interdependence functional forms they impose. I do
not impose a random-coefficients structure on the determinants of fixed-costs, but I do allow one
dimension of heterogeneity in �ij.

Estimation. Estimating this model differs from standard Berry et al. (1995) estimation, in
that even the intensive-margin parameters become non-linear. This is because the extensive margin
can not be solved without taking a stance on the intensive margin parameters.54 The estimation
procedure will need to be simulated method of moments where I attempt to match moments of
the intensive and extensive margin. But, given the large number of non-linear parameters this
introduces, I will likely rely on the quasi-bayesian procedure introduced in Section 7.1. The core
contribution of this approach is that I try to seriously handle the issue of observed and unobserved
heterogeneity in the preference for country exports. This will yield more realistic substitution
patterns, which can critically evaluate the proportional substitution assumptions of the commonly

54In Appendix Section E.6 I describe the estimation challenge in additional detail.
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used CES preferences and yield more realistic trade counterfactuals.

E.4 Characteristic Demand System Microfoundation

Let us consider a single country j to start. This country is populated by a continuum of upstream
firms in each sector, Nj,c - where j indexes the country c the sector. Each firm sells a differen-
tiated input sold at price wj. These upstream inputs are aggregated by a perfectly competitive
intermediary sector with access to the following input aggregation technology:

yj,c =

✓Z Nc

0

x (i)� di

◆ 1
�

.

These firms sell at marginal cost:
pj,c = wjN

� 1
�

j,c .

These sector-specific intermediates and then bundled into single exportable commodity yj with price

pj =
P

c pj,c. I can alternatively view one unit of this commodity as providing N

1
�

j,c units of each
sector’s input as a price of Cwj. The final good producing firm then combines differentiated global
varieties, subject to import fixed costs, to produce consumable goods:
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E.5 Complementarity Claim

Restating Profit Function. I start by restating the firms objective function:

max
{yj , j}
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Lets drop the indicators for now, but they will reappear in the end whenever I sum over counties.
Taking the first-order condition with respect to yj yields:
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Taking the ratio of prices for two countries I get :
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where the term ↵j is given by
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Substituting equation E.2, I can get an implicit equation for ↵j
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I can then write output as
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and substituting equation E.2 I get
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Rearranging terms and summing both sides yields
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To get profits I then write
max
Y
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⇢�1
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which yields
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Substituting back into the objective gives
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Minimal Example - Similar Characteristics. Suppose there are two countries j 2 {A,B}
and two characteristics c 2 {1, 2}. Suppose that prices are equal across counties and there are no
trade costs. Normalize that price to 1: pA = pB = 1 . The characteristics are distributed as follows:

x
1
A =x̄

x
2
A =0

x
1
B =x̄

x
2
B =0

Suppose that the firm already imports from A. I want to know if adding B to the sourcing set will
raise the payoff from sourcing from A. Note that with the normalization, I now have
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Additionally, with the imposed symmetry, I know that when the firm sources from one location
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This is profits from sourcing from both countries {A,B} less the profits from just sourcing from B

compared to the profits from sourcing from just A. This quantity is positive whenever
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� 2.
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This is true whenever is ⇢�1
�1�1 > 1 ) � < ⇢. This is more likely to be true when the characteristic

1 is less substitutable and the price elasticity of demand is high, so any price reductions produce
proportionally larger changes in quantities demanded. Conversely, if the characteristic is very
substitutable, then it becomes less likely that sourcing from these counties is complementary.

Minimal Example - Different Characteristics. Consider the same setting, but I redistributed
characteristics as follows:

x
1
A =x̄

x
2
A =0

x
1
B =0

x
2
B =x̄

Suppose that the firm already imports from A. I want to know if adding B to the sourcing set will
raise the payoff from sourcing from A. I can follow an nearly identical set of steps to get

Ã
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��1
�

⌘��1
� (⇢�1)

� Ã (x̄)(⇢�1) � Ã (x̄)(⇢�1)
,

which just swaps the cross-country elasticity of substitution for the cross-characteristic one. This
is more likely to be true when the characteristics themselves are less substitutable and the price
elasticity of demand is high.

E.6 Challenges in Estimation

I first subset parameters into a linear and non-linear set. The linear parameters are �L =
n
�
c
, �

cc0

k ,↵
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and the non-linear parameters are �
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. In standard BLP estimation I start

with a guess for the non-linear parameters. I then solve for the {�j} , such that the model-implied
spending shares

s =

Z
ij exp (�j + g (⌫i))P

m ij exp (�j + g (⌫i))
dF (⌫i) ,

equal those observed in the data. The intensive margin parameters are then determined by regressing
�j on the characteristics of choice j using moment conditions based off of ⇠j being uncorrelated with
various instruments. The problem is that ij is a function of the intensive margin parameters. So
I can not get �j without first taking a stance on those parameters.
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